# coding=utf-8 # Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Elite Voice Project""" import csv import json import os import datasets _CITATION = """\ @InProceedings{elitevoiceproject:dataset, title = {Elite Voice Project}, author={Elite35P Server.}, year={2022} } """ _HOMEPAGE = "https://nyahello.jp/" _LICENSE = "https://hololive.hololivepro.com/guidelines/" _BASE_URL = "https://huggingface.co/datasets/Elite35P-Server/EliteVoiceProject/resolve/main/" _AUDIO_URL = _BASE_URL + "audio/{platform}/{platform}_{version}.tar" _TRANSCRIPT_URL = _BASE_URL + "transcript/{platform}/{platform}_{version}.tsv" class EliteVoiceProjectConfig(datasets.BuilderConfig): """BuilderConfig for EliteVoiceProject.""" def __init__(self, name, version, **kwargs): self.language = kwargs.pop("language", None) self.release_date = kwargs.pop("release_date", None) description = ( f"Elite Voice Project speech to text dataset in {self.language} released on {self.release_date}. " ) super(EliteVoiceProjectConfig, self).__init__( name=name, version=datasets.Version(version), description=description, **kwargs, ) class EliteVoiceProject(datasets.GeneratorBasedBuilder): DEFAULT_WRITER_BATCH_SIZE = 1000 BUILDER_CONFIGS = [ EliteVoiceProjectConfig( name='Elite Voice Project', version='1', language='Japanese', release_date='2022-12-06', ) ] def _info(self): description = ( "Elite Voice Project はホロライブ所属VTuberのさくらみこ氏の声をデータセット化することを目的に" "TwitterのSpace配信等のアーカイブから音声を切り出し、センテンスを当てています。" "当データセットは、hololive productionの二次創作ガイドラインに沿ってご利用ください。" ) features = datasets.Features( { "audio": datasets.features.Audio(sampling_rate=48_000), "sentence": datasets.Value("string"), } ) return datasets.DatasetInfo( description=description, features=features, supervised_keys=None, homepage=_HOMEPAGE, license=_LICENSE, citation=_CITATION, version=self.config.version, ) def _split_generators(self, dl_manager): version = self.config.version audio_urls = {} #splits = ("twitter", "youtube", "twitch", "test") splits = ("twitter") for split in splits: audio_urls[split] = [ _AUDIO_URL.format(platform=split, version=version) ] archive_paths = dl_manager.download(audio_urls) local_extracted_archive_paths = dl_manager.extract(archive_paths) if not dl_manager.is_streaming else {} meta_urls = {split: _TRANSCRIPT_URL.format(platform=split, version=version) for split in splits} meta_paths = dl_manager.download_and_extract(meta_urls) split_generators = [] split_names = { "twitter": datasets.Split.TRAIN, #"youtube": datasets.Split.TRAIN, #"twitch": datasets.Split.TRAIN, #"test": datasets.Split.TEST, } for split in splits: split_generators.append( datasets.SplitGenerator( name=split_names.get(split, split), gen_kwargs={ "local_extracted_archive_paths": local_extracted_archive_paths.get(split), "archives": [dl_manager.iter_archive(path) for path in archive_paths.get(split)], "meta_path": meta_paths[split], }, ), ) return split_generators def _generate_examples(self, local_extracted_archive_paths, archives, meta_path): data_fields = list(self._info().features.keys()) metadata = {} with open(meta_path, encoding="utf-8") as f: reader = csv.DictReader(f, delimiter="\t", quoting=csv.QUOTE_NONE) for row in tqdm(reader, desc="Reading metadata..."): if not row["path"].endswith(".mp3"): row["path"] += ".mp3" # accent -> accents in CV 8.0 if "accents" in row: row["accent"] = row["accents"] del row["accents"] # if data is incomplete, fill with empty values for field in data_fields: if field not in row: row[field] = "" metadata[row["path"]] = row for i, audio_archive in enumerate(archives): for filename, file in audio_archive: _, filename = os.path.split(filename) if filename in metadata: result = dict(metadata[filename]) # set the audio feature and the path to the extracted file path = os.path.join(local_extracted_archive_paths[i], filename) if local_extracted_archive_paths else filename result["audio"] = {"path": path, "bytes": file.read()} # set path to None if the audio file doesn't exist locally (i.e. in streaming mode) result["path"] = path if local_extracted_archive_paths else filename yield path, result