Upload dataset_stt.py
Browse files- dataset_stt.py +130 -0
dataset_stt.py
ADDED
@@ -0,0 +1,130 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import csv
|
2 |
+
import tarfile
|
3 |
+
import datasets
|
4 |
+
|
5 |
+
_DESCRIPTION = """\
|
6 |
+
This dataset is designed for speech-to-text tasks and contains audio files stored in tar archives along with corresponding transcript files in TSV format.
|
7 |
+
The dataset is organized by splits (train, test, validation) for the Uzbek language.
|
8 |
+
"""
|
9 |
+
|
10 |
+
_CITATION = """\
|
11 |
+
@inproceedings{yourcitation2025,
|
12 |
+
title={Your Dataset Title},
|
13 |
+
author={Your Name},
|
14 |
+
year={2025},
|
15 |
+
eprint={XXXX.XXXX},
|
16 |
+
archivePrefix={arXiv},
|
17 |
+
primaryClass={cs.CL}
|
18 |
+
}
|
19 |
+
"""
|
20 |
+
|
21 |
+
_LICENSE = "MIT"
|
22 |
+
|
23 |
+
class DatasetSTT(datasets.GeneratorBasedBuilder):
|
24 |
+
VERSION = datasets.Version("1.0.0")
|
25 |
+
|
26 |
+
def _info(self):
|
27 |
+
# Belgilangan feature'lar: audio field Audio tipida (sampling_rate ni moslashtiring, masalan 16000)
|
28 |
+
features = datasets.Features({
|
29 |
+
"id": datasets.Value("string"),
|
30 |
+
"audio": datasets.Audio(sampling_rate=16000),
|
31 |
+
"sentence": datasets.Value("string"),
|
32 |
+
"duration": datasets.Value("float"),
|
33 |
+
"age": datasets.Value("string"),
|
34 |
+
"gender": datasets.Value("string"),
|
35 |
+
"accents": datasets.Value("string"),
|
36 |
+
"locale": datasets.Value("string"),
|
37 |
+
})
|
38 |
+
return datasets.DatasetInfo(
|
39 |
+
description=_DESCRIPTION,
|
40 |
+
features=features,
|
41 |
+
supervised_keys=None,
|
42 |
+
homepage="https://huggingface.co/datasets/Elyordev/Dataset_STT",
|
43 |
+
license=_LICENSE,
|
44 |
+
citation=_CITATION,
|
45 |
+
)
|
46 |
+
|
47 |
+
def _split_generators(self, dl_manager):
|
48 |
+
"""
|
49 |
+
Biz kutilayotgan fayl strukturasini quyidagicha belgilaymiz:
|
50 |
+
|
51 |
+
data_files = {
|
52 |
+
"train": {
|
53 |
+
"audio": "audio/uz/train/train.tar",
|
54 |
+
"transcript": "transcript/uz/train/train.tsv"
|
55 |
+
},
|
56 |
+
"test": {
|
57 |
+
"audio": "audio/uz/test/test.tar",
|
58 |
+
"transcript": "transcript/uz/test/test.tsv"
|
59 |
+
},
|
60 |
+
"validation": {
|
61 |
+
"audio": "audio/uz/validation/validation.tar",
|
62 |
+
"transcript": "transcript/uz/validation/validation.tsv"
|
63 |
+
}
|
64 |
+
}
|
65 |
+
"""
|
66 |
+
data_files = self.config.data_files
|
67 |
+
return [
|
68 |
+
datasets.SplitGenerator(
|
69 |
+
name=datasets.Split.TRAIN,
|
70 |
+
gen_kwargs={
|
71 |
+
"audio_archive": data_files["train"]["audio"],
|
72 |
+
"transcript_file": data_files["train"]["transcript"],
|
73 |
+
},
|
74 |
+
),
|
75 |
+
datasets.SplitGenerator(
|
76 |
+
name=datasets.Split.TEST,
|
77 |
+
gen_kwargs={
|
78 |
+
"audio_archive": data_files["test"]["audio"],
|
79 |
+
"transcript_file": data_files["test"]["transcript"],
|
80 |
+
},
|
81 |
+
),
|
82 |
+
datasets.SplitGenerator(
|
83 |
+
name=datasets.Split.VALIDATION,
|
84 |
+
gen_kwargs={
|
85 |
+
"audio_archive": data_files["validation"]["audio"],
|
86 |
+
"transcript_file": data_files["validation"]["transcript"],
|
87 |
+
},
|
88 |
+
),
|
89 |
+
]
|
90 |
+
|
91 |
+
def _generate_examples(self, audio_archive, transcript_file):
|
92 |
+
"""
|
93 |
+
Transcript TSV faylini o'qib, har bir yozuv uchun:
|
94 |
+
- tar arxivini ochib, "path" ustuni orqali audio faylni topamiz;
|
95 |
+
- Audio faylni baytlar shaklida o'qib, datasets.Audio feature'iga mos formatda qaytaramiz.
|
96 |
+
"""
|
97 |
+
# Tar arxivini ochamiz
|
98 |
+
with tarfile.open(audio_archive, "r:*") as tar:
|
99 |
+
# Tar arxividagi barcha fayllarni indekslaymiz (fayl nomi -> tarinfo)
|
100 |
+
tar_index = {member.name: member for member in tar.getmembers() if member.isfile()}
|
101 |
+
|
102 |
+
# Transcript TSV faylini o'qish (UTF-8 kodlashda)
|
103 |
+
with open(transcript_file, "r", encoding="utf-8") as f:
|
104 |
+
reader = csv.DictReader(f, delimiter="\t")
|
105 |
+
for row in reader:
|
106 |
+
file_name = row["path"]
|
107 |
+
# Agar arxivda fayl topilsa:
|
108 |
+
if file_name in tar_index:
|
109 |
+
# Faylni o'qib, butun baytlarni olamiz
|
110 |
+
audio_member = tar.extractfile(tar_index[file_name])
|
111 |
+
if audio_member is None:
|
112 |
+
print(f"Warning: Could not extract {file_name} from {audio_archive}.")
|
113 |
+
continue
|
114 |
+
audio_bytes = audio_member.read()
|
115 |
+
else:
|
116 |
+
# Agar fayl topilmasa, ogohlantirish chiqaramiz va davom etamiz.
|
117 |
+
print(f"Warning: File {file_name} not found in archive {audio_archive}.")
|
118 |
+
continue
|
119 |
+
|
120 |
+
# Yozuvni qaytaramiz, audio maydoni uchun file nomi va baytlarni dictionary ko'rinishida beramiz.
|
121 |
+
yield row["id"], {
|
122 |
+
"id": row["id"],
|
123 |
+
"audio": {"path": file_name, "bytes": audio_bytes},
|
124 |
+
"sentence": row["sentence"],
|
125 |
+
"duration": float(row["duration"]),
|
126 |
+
"age": row["age"],
|
127 |
+
"gender": row["gender"],
|
128 |
+
"accents": row["accents"],
|
129 |
+
"locale": row["locale"],
|
130 |
+
}
|