File size: 5,120 Bytes
9f45be4 5646b79 9f45be4 5646b79 9f45be4 5646b79 9f45be4 5646b79 9f45be4 5c85b3d 6befdc6 1a7d0ee 5c85b3d d2c8ed4 5c85b3d 4e63083 5c85b3d 1a7d0ee 5c85b3d 1a7d0ee 5c85b3d d2c8ed4 5c85b3d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 |
---
language:
- en
license: apache-2.0
size_categories:
- 100K<n<1M
task_categories:
- reinforcement-learning
pretty_name: Procgen Benchmark - Bigfish
dataset_info:
- config_name: bossfight
features:
- name: observation
dtype:
array3_d:
shape:
- 64
- 64
- 3
dtype: uint8
- name: action
dtype: uint8
- name: reward
dtype: float32
- name: done
dtype: bool
- name: truncated
dtype: bool
splits:
- name: train
num_bytes: 26043525000
num_examples: 900000
download_size: 4319836852
dataset_size: 26043525000
- config_name: default
features:
- name: observation
dtype:
array3_d:
shape:
- 64
- 64
- 3
dtype: uint8
- name: action
dtype: uint8
- name: reward
dtype: float32
- name: done
dtype: bool
- name: truncated
dtype: bool
splits:
- name: train
num_bytes: 26043525000
num_examples: 900000
- name: test
num_bytes: 2893725000
num_examples: 100000
download_size: 3128341675
dataset_size: 28937250000
configs:
- config_name: bossfight
data_files:
- split: train
path: bossfight/train-*
- config_name: default
data_files:
- split: train
path: data/train-*
- split: test
path: data/test-*
tags:
- procgen
- bigfish
- benchmark
- openai
---
# Procgen Benchmark - Bigfish
<video controls autoplay src="https://cdn-uploads.huggingface.co/production/uploads/633c1daf31c06121a58f2df9/brMaX1xgew7ulqkMU0Ahi.mp4"></video>
This dataset contains trajectories generated by a [PPO](https://arxiv.org/abs/1707.06347) reinforcement learning agent trained on the Bigfish environment from the [Procgen Benchmark](https://openai.com/index/procgen-benchmark/). The agent has been trained for 50M steps and the final evaluation performance is `32.33`.
## Dataset Usage
Regular usage:
```python
from datasets import load_dataset
train_dataset = load_dataset("EpicPinkPenguin/procgen_bigfish", split="train")
test_dataset = load_dataset("EpicPinkPenguin/procgen_bigfish", split="test")
```
Usage with PyTorch:
```python
from datasets import load_dataset
train_dataset = load_dataset("EpicPinkPenguin/procgen_bigfish", split="train").with_format("torch")
test_dataset = load_dataset("EpicPinkPenguin/procgen_bigfish", split="test").with_format("torch")
```
## Dataset Structure
### Data Instances
Each data instance represents a single step consisting of tuples of the form (observation, action, reward, done, truncated) = (o_t, a_t, r_{t+1}, done_{t+1}, trunc_{t+1}).
```json
{'action': 1,
'done': False,
'observation': [[[0, 166, 253],
[0, 174, 255],
[0, 170, 251],
[0, 191, 255],
[0, 191, 255],
[0, 221, 255],
[0, 243, 255],
[0, 248, 255],
[0, 243, 255],
[10, 239, 255],
[25, 255, 255],
[0, 241, 255],
[0, 235, 255],
[17, 240, 255],
[10, 243, 255],
[27, 253, 255],
[39, 255, 255],
[58, 255, 255],
[85, 255, 255],
[111, 255, 255],
[135, 255, 255],
[151, 255, 255],
[173, 255, 255],
...
[0, 0, 37],
[0, 0, 39]]],
'reward': 0.0,
'truncated': False}
```
### Data Fields
- `observation`: The current RGB observation from the environment.
- `action`: The action predicted by the agent for the current observation.
- `reward`: The received reward from stepping the environment with the current action.
- `done`: If the new observation is the start of a new episode. Obtained after stepping the environment with the current action.
- `truncated`: If the new observation is the start of a new episode due to truncation. Obtained after stepping the environment with the current action.
### Data Splits
The dataset is divided into a `train` (90%) and `test` (10%) split
## Dataset Creation
The dataset was created by training an RL agent with [PPO](https://arxiv.org/abs/1707.06347) for 50M steps on the Procgen Bigfish environment. The agent obtained a final performance of `32.33`. The trajectories where generated by taking the argmax action at each step, corresponding to taking the mode of the action distribution.
## Procgen Benchmark
The [Procgen Benchmark](https://openai.com/index/procgen-benchmark/), released by OpenAI, consists of 16 procedurally-generated environments designed to measure how quickly reinforcement learning (RL) agents learn generalizable skills. It emphasizes experimental convenience, high diversity within and across environments, and is ideal for evaluating both sample efficiency and generalization. The benchmark allows for distinct training and test sets in each environment, making it a standard research platform for the OpenAI RL team. It aims to address the need for more diverse RL benchmarks compared to complex environments like Dota and StarCraft. |