File size: 11,436 Bytes
9f45be4
5646b79
 
9f45be4
5646b79
 
 
 
3d4cb67
9f45be4
ffca7e4
5646b79
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
428ea48
 
 
ffca7e4
428ea48
ffca7e4
9f45be4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0e43d50
 
 
791e529
 
 
 
9f45be4
2355dcd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f4e008a
 
 
 
 
47edaed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b257d9b
 
 
 
 
ffca7e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a503a84
 
 
 
 
699cecf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4d357b4
 
 
 
 
9f45be4
ffca7e4
 
 
 
 
 
5646b79
 
 
 
428ea48
 
2355dcd
 
 
 
f4e008a
 
47edaed
 
 
 
b257d9b
 
ffca7e4
9f45be4
 
ffca7e4
a503a84
 
699cecf
 
 
 
4d357b4
 
9f45be4
 
 
 
 
3d4cb67
 
 
 
 
 
 
 
 
 
 
 
 
 
5c85b3d
3d4cb67
c806698
3d4cb67
 
5c85b3d
d2c8ed4
 
3d4cb67
d2c8ed4
 
3d4cb67
 
d2c8ed4
 
3d4cb67
d2c8ed4
 
3d4cb67
 
d2c8ed4
 
3d4cb67
 
 
 
f85f87b
3d4cb67
 
b9d07a5
3d4cb67
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5c85b3d
 
4e63083
5c85b3d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1a7d0ee
 
 
 
 
5c85b3d
 
3db9c61
5c85b3d
 
c806698
5c85b3d
b9d07a5
 
 
7211e6c
 
b6c9015
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b9d07a5
5c85b3d
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
---
language:
- en
license: apache-2.0
size_categories:
- 100K<n<1M
task_categories:
- reinforcement-learning
pretty_name: Procgen Benchmark Dataset
dataset_info:
- config_name: bigfish
  features:
  - name: observation
    dtype:
      array3_d:
        shape:
        - 64
        - 64
        - 3
        dtype: uint8
  - name: action
    dtype: uint8
  - name: reward
    dtype: float32
  - name: done
    dtype: bool
  - name: truncated
    dtype: bool
  splits:
  - name: train
    num_bytes: 26043525000
    num_examples: 900000
  - name: test
    num_bytes: 2893725000
    num_examples: 100000
  download_size: 3128341675
  dataset_size: 28937250000
- config_name: bossfight
  features:
  - name: observation
    dtype:
      array3_d:
        shape:
        - 64
        - 64
        - 3
        dtype: uint8
  - name: action
    dtype: uint8
  - name: reward
    dtype: float32
  - name: done
    dtype: bool
  - name: truncated
    dtype: bool
  splits:
  - name: train
    num_bytes: 26043525000
    num_examples: 900000
  - name: test
    num_bytes: 2893725000
    num_examples: 100000
  download_size: 9295623234
  dataset_size: 28937250000
- config_name: caveflyer
  features:
  - name: observation
    dtype:
      array3_d:
        shape:
        - 64
        - 64
        - 3
        dtype: uint8
  - name: action
    dtype: uint8
  - name: reward
    dtype: float32
  - name: done
    dtype: bool
  - name: truncated
    dtype: bool
  splits:
  - name: train
    num_bytes: 26043525000
    num_examples: 900000
  - name: test
    num_bytes: 2893725000
    num_examples: 100000
  download_size: 5279167331
  dataset_size: 28937250000
- config_name: fruitbot
  features:
  - name: observation
    dtype:
      array3_d:
        shape:
        - 64
        - 64
        - 3
        dtype: uint8
  - name: action
    dtype: uint8
  - name: reward
    dtype: float32
  - name: done
    dtype: bool
  - name: truncated
    dtype: bool
  splits:
  - name: train
    num_bytes: 26043525000
    num_examples: 900000
  - name: test
    num_bytes: 2893725000
    num_examples: 100000
  download_size: 8886977797
  dataset_size: 28937250000
- config_name: miner
  features:
  - name: observation
    dtype:
      array3_d:
        shape:
        - 64
        - 64
        - 3
        dtype: uint8
  - name: action
    dtype: uint8
  - name: reward
    dtype: float32
  - name: done
    dtype: bool
  - name: truncated
    dtype: bool
  splits:
  - name: train
    num_bytes: 26043525000
    num_examples: 900000
  - name: test
    num_bytes: 2893725000
    num_examples: 100000
  download_size: 1895918513
  dataset_size: 28937250000
- config_name: ninja
  features:
  - name: observation
    dtype:
      array3_d:
        shape:
        - 64
        - 64
        - 3
        dtype: uint8
  - name: action
    dtype: uint8
  - name: reward
    dtype: float32
  - name: done
    dtype: bool
  - name: truncated
    dtype: bool
  splits:
  - name: train
    num_bytes: 26043525000
    num_examples: 900000
  - name: test
    num_bytes: 2893725000
    num_examples: 100000
  download_size: 3296432308
  dataset_size: 28937250000
configs:
- config_name: bigfish
  data_files:
  - split: train
    path: bigfish/train-*
  - split: test
    path: bigfish/test-*
- config_name: bossfight
  data_files:
  - split: train
    path: bossfight/train-*
  - split: test
    path: bossfight/test-*
- config_name: caveflyer
  data_files:
  - split: train
    path: caveflyer/train-*
  - split: test
    path: caveflyer/test-*
- config_name: fruitbot
  data_files:
  - split: train
    path: fruitbot/train-*
  - split: test
    path: fruitbot/test-*
- config_name: miner
  data_files:
  - split: train
    path: miner/train-*
  - split: test
    path: miner/test-*
- config_name: ninja
  data_files:
  - split: train
    path: ninja/train-*
  - split: test
    path: ninja/test-*
tags:
- procgen
- bigfish
- benchmark
- openai
- bossfight
- caveflyer
- chaser
- climber
- dodgeball
- fruitbot
- heist
- jumper
- leaper
- maze
- miner
- ninja
- plunder
- starpilot
---
# Procgen Benchmark
This dataset contains expert trajectories generated by a [PPO](https://arxiv.org/abs/1707.06347) reinforcement learning agent trained on each of the 16 procedurally-generated gym environments from the [Procgen Benchmark](https://openai.com/index/procgen-benchmark/). The environments were created on `distribution_mode=easy` and with unlimited levels.

Disclaimer: This is not an official repository from OpenAI.

## Dataset Usage

Regular usage (for environment bigfish):
```python
from datasets import load_dataset
train_dataset = load_dataset("EpicPinkPenguin/procgen", name="bigfish", split="train")
test_dataset = load_dataset("EpicPinkPenguin/procgen", name="bigfish", split="test")
```

Usage with PyTorch (for environment bossfight):
```python
from datasets import load_dataset
train_dataset = load_dataset("EpicPinkPenguin/procgen", name="bossfight", split="train").with_format("torch")
test_dataset = load_dataset("EpicPinkPenguin/procgen", name="bossfight", split="test").with_format("torch")
```

## Agent Performance
The PPO RL agent was trained for 50M steps on each environment and obtained the following final performance metrics.

| Environment | Return |
|:------------|:-------|
| bigfish     | 32.77  |
| bossfight   | 12.49  |
| caveflyer   | xx.xx  |
| chaser      | xx.xx  |
| climber     | xx.xx  |
| coinrun     | xx.xx  |
| dodgeball   | xx.xx  |
| fruitbot    | xx.xx  |
| heist       | xx.xx  |
| jumper      | xx.xx  |
| leaper      | xx.xx  |
| maze        | xx.xx  |
| miner       | xx.xx  |
| ninja       | xx.xx  |
| plunder     | xx.xx  |
| starpilot   | xx.xx  |


## Dataset Structure
### Data Instances
Each data instance represents a single step consisting of tuples of the form (observation, action, reward, done, truncated) = (o_t, a_t, r_{t+1}, done_{t+1}, trunc_{t+1}).

```json
{'action': 1,
 'done': False,
 'observation': [[[0, 166, 253],
                  [0, 174, 255],
                  [0, 170, 251],
                  [0, 191, 255],
                  [0, 191, 255],
                  [0, 221, 255],
                  [0, 243, 255],
                  [0, 248, 255],
                  [0, 243, 255],
                  [10, 239, 255],
                  [25, 255, 255],
                  [0, 241, 255],
                  [0, 235, 255],
                  [17, 240, 255],
                  [10, 243, 255],
                  [27, 253, 255],
                  [39, 255, 255],
                  [58, 255, 255],
                  [85, 255, 255],
                  [111, 255, 255],
                  [135, 255, 255],
                  [151, 255, 255],
                  [173, 255, 255],
...
                  [0, 0, 37],
                  [0, 0, 39]]],
 'reward': 0.0,
 'truncated': False}
```

### Data Fields
- `observation`: The current RGB observation from the environment.
- `action`: The action predicted by the agent for the current observation.
- `reward`: The received reward from stepping the environment with the current action.
- `done`: If the new observation is the start of a new episode. Obtained after stepping the environment with the current action.
- `truncated`: If the new observation is the start of a new episode due to truncation. Obtained after stepping the environment with the current action.

### Data Splits
The dataset is divided into a `train` (90%) and `test` (10%) split. Each environment-dataset has in sum 1M steps (data points).

## Dataset Creation
The dataset was created by training an RL agent with [PPO](https://arxiv.org/abs/1707.06347) for 50M steps in each environment. The trajectories where generated by taking the argmax action at each step, corresponding to taking the mode of the action distribution. Consequently the rollout policy is deterministic. The environments were created on `distribution_mode=easy` and with unlimited levels.

## Video Samples
Here is a collection of videos with the RGB observations from the dataset.

| Environment | Observation |
|:------------|:------------|
| bigfish     | <video controls autoplay loop src="https://cdn-uploads.huggingface.co/production/uploads/633c1daf31c06121a58f2df9/lHQXBqLdoWicXlt68I9QX.mp4"></video>  |
| bossfight   | <video controls autoplay loop src="https://cdn-uploads.huggingface.co/production/uploads/633c1daf31c06121a58f2df9/LPoafGi4YBWqqkuFlEN_l.mp4"></video>  |
| caveflyer   | <video controls autoplay loop src="https://cdn-uploads.huggingface.co/production/uploads/633c1daf31c06121a58f2df9/XVqRwu_9yfX4ECQc4At4G.mp4"></video>  |
| chaser      | <video controls autoplay loop src="https://cdn-uploads.huggingface.co/production/uploads/633c1daf31c06121a58f2df9/FIKVv48SThqiC1Z2PYQ7U.mp4"></video>  |
| climber     | <video controls autoplay loop src="https://cdn-uploads.huggingface.co/production/uploads/633c1daf31c06121a58f2df9/XJQlA7IyF9_gwUiw-FkND.mp4"></video>  |
| coinrun     | <video controls autoplay loop src="https://cdn-uploads.huggingface.co/production/uploads/633c1daf31c06121a58f2df9/Ucv3HZttewMRQzTL8r_Tw.mp4"></video>  |
| dodgeball   | <video controls autoplay loop src="https://cdn-uploads.huggingface.co/production/uploads/633c1daf31c06121a58f2df9/5HetbKuXBpO-v1jcVyLTU.mp4"></video>  |
| fruitbot    | <video controls autoplay loop src="https://cdn-uploads.huggingface.co/production/uploads/633c1daf31c06121a58f2df9/zKCyxXvauXjUac-5kEAWz.mp4"></video>  |
| heist       | <video controls autoplay loop src="https://cdn-uploads.huggingface.co/production/uploads/633c1daf31c06121a58f2df9/AdZ6XNmUN5_00BKd9BN8R.mp4"></video>  |
| jumper      | <video controls autoplay loop src="https://cdn-uploads.huggingface.co/production/uploads/633c1daf31c06121a58f2df9/s5k31gWK2Vc6Lp6QVzQXA.mp4"></video>  |
| leaper      | <video controls autoplay loop src="https://cdn-uploads.huggingface.co/production/uploads/633c1daf31c06121a58f2df9/_hDMocxjmzutc0t5FfoTX.mp4"></video>  |
| maze        | <video controls autoplay loop src="https://cdn-uploads.huggingface.co/production/uploads/633c1daf31c06121a58f2df9/uhNdDPuNhZpxVns91Ba-9.mp4"></video>  |
| miner       | <video controls autoplay loop src="https://cdn-uploads.huggingface.co/production/uploads/633c1daf31c06121a58f2df9/ElpJ8l2WHJGrprZ3-giHU.mp4"></video>  |
| ninja       | <video controls autoplay loop src="https://cdn-uploads.huggingface.co/production/uploads/633c1daf31c06121a58f2df9/b9i-fb2Twh8XmBBNf2DRG.mp4"></video>  |
| plunder     | <video controls autoplay loop src="https://cdn-uploads.huggingface.co/production/uploads/633c1daf31c06121a58f2df9/JPeGNOVzrotuYUjfzZj40.mp4"></video>  |
| starpilot   | <video controls autoplay loop src="https://cdn-uploads.huggingface.co/production/uploads/633c1daf31c06121a58f2df9/wY9lZgkw5tor19hCWmm6A.mp4"></video>  |

## Procgen Benchmark
The [Procgen Benchmark](https://openai.com/index/procgen-benchmark/), released by OpenAI, consists of 16 procedurally-generated environments designed to measure how quickly reinforcement learning (RL) agents learn generalizable skills. It emphasizes experimental convenience, high diversity within and across environments, and is ideal for evaluating both sample efficiency and generalization. The benchmark allows for distinct training and test sets in each environment, making it a standard research platform for the OpenAI RL team. It aims to address the need for more diverse RL benchmarks compared to complex environments like Dota and StarCraft.