File size: 6,039 Bytes
9f45be4
5646b79
 
9f45be4
5646b79
 
 
 
3d4cb67
9f45be4
5646b79
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
428ea48
 
 
 
 
56bc22f
9f45be4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5646b79
 
 
 
428ea48
 
56bc22f
9f45be4
 
56bc22f
9f45be4
56bc22f
9f45be4
 
 
 
 
3d4cb67
 
 
 
 
 
 
 
 
 
 
 
 
 
5c85b3d
3d4cb67
6befdc6
3d4cb67
6befdc6
3d4cb67
 
 
5c85b3d
d2c8ed4
 
3d4cb67
d2c8ed4
 
3d4cb67
 
d2c8ed4
 
3d4cb67
d2c8ed4
 
3d4cb67
 
d2c8ed4
 
3d4cb67
 
 
 
f85f87b
3d4cb67
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5c85b3d
 
4e63083
5c85b3d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1a7d0ee
 
 
 
 
5c85b3d
 
1a7d0ee
5c85b3d
 
3d4cb67
5c85b3d
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
---
language:
- en
license: apache-2.0
size_categories:
- 100K<n<1M
task_categories:
- reinforcement-learning
pretty_name: Procgen Benchmark Dataset
dataset_info:
- config_name: bossfight
  features:
  - name: observation
    dtype:
      array3_d:
        shape:
        - 64
        - 64
        - 3
        dtype: uint8
  - name: action
    dtype: uint8
  - name: reward
    dtype: float32
  - name: done
    dtype: bool
  - name: truncated
    dtype: bool
  splits:
  - name: train
    num_bytes: 26043525000
    num_examples: 900000
  - name: test
    num_bytes: 2893725000
    num_examples: 100000
  download_size: 4787252231
  dataset_size: 28937250000
- config_name: bigfish
  features:
  - name: observation
    dtype:
      array3_d:
        shape:
        - 64
        - 64
        - 3
        dtype: uint8
  - name: action
    dtype: uint8
  - name: reward
    dtype: float32
  - name: done
    dtype: bool
  - name: truncated
    dtype: bool
  splits:
  - name: train
    num_bytes: 26043525000
    num_examples: 900000
  - name: test
    num_bytes: 2893725000
    num_examples: 100000
  download_size: 3128341675
  dataset_size: 28937250000
configs:
- config_name: bossfight
  data_files:
  - split: train
    path: bossfight/train-*
  - split: test
    path: bossfight/test-*
- config_name: bigfish
  data_files:
  - split: train
    path: bigfish/train-*
  - split: test
    path: bigfish/test-*
tags:
- procgen
- bigfish
- benchmark
- openai
- bossfight
- caveflyer
- chaser
- climber
- dodgeball
- fruitbot
- heist
- jumper
- leaper
- maze
- miner
- ninja
- plunder
- starpilot
---
# Procgen Benchmark

<video controls autoplay loop src="https://cdn-uploads.huggingface.co/production/uploads/633c1daf31c06121a58f2df9/brMaX1xgew7ulqkMU0Ahi.mp4"></video>

This dataset contains expert trajectories generated by a [PPO](https://arxiv.org/abs/1707.06347) reinforcement learning agent trained on each of the 16 procedurally-generated gym environments from the [Procgen Benchmark](https://openai.com/index/procgen-benchmark/).

Disclaimer: This is not an official repository from OpenAI.

## Dataset Usage

Regular usage (for environment bigfish):
```python
from datasets import load_dataset
train_dataset = load_dataset("EpicPinkPenguin/procgen", name="bigfish", split="train")
test_dataset = load_dataset("EpicPinkPenguin/procgen", name="bigfish", split="test")
```

Usage with PyTorch (for environment bossfight):
```python
from datasets import load_dataset
train_dataset = load_dataset("EpicPinkPenguin/procgen", name="bossfight", split="train").with_format("torch")
test_dataset = load_dataset("EpicPinkPenguin/procgen", name="bossfight", split="test").with_format("torch")
```

## Agent Performance
The PPO RL agent was trained for 50M steps on each environment and obtained the following final performance metrics.

| Environment | Return |
|:------------|:-------|
| bigfish     | 32.77  |
| bossfight   | 12.49  |
| caveflyer   | xx.xx  |
| chaser      | xx.xx  |
| climber     | xx.xx  |
| coinrun     | xx.xx  |
| dodgeball   | xx.xx  |
| fruitbot    | xx.xx  |
| heist       | xx.xx  |
| jumper      | xx.xx  |
| leaper      | xx.xx  |
| maze        | xx.xx  |
| miner       | xx.xx  |
| ninja       | xx.xx  |
| plunder     | xx.xx  |
| starpilot   | xx.xx  |


## Dataset Structure
### Data Instances
Each data instance represents a single step consisting of tuples of the form (observation, action, reward, done, truncated) = (o_t, a_t, r_{t+1}, done_{t+1}, trunc_{t+1}).

```json
{'action': 1,
 'done': False,
 'observation': [[[0, 166, 253],
                  [0, 174, 255],
                  [0, 170, 251],
                  [0, 191, 255],
                  [0, 191, 255],
                  [0, 221, 255],
                  [0, 243, 255],
                  [0, 248, 255],
                  [0, 243, 255],
                  [10, 239, 255],
                  [25, 255, 255],
                  [0, 241, 255],
                  [0, 235, 255],
                  [17, 240, 255],
                  [10, 243, 255],
                  [27, 253, 255],
                  [39, 255, 255],
                  [58, 255, 255],
                  [85, 255, 255],
                  [111, 255, 255],
                  [135, 255, 255],
                  [151, 255, 255],
                  [173, 255, 255],
...
                  [0, 0, 37],
                  [0, 0, 39]]],
 'reward': 0.0,
 'truncated': False}
```

### Data Fields
- `observation`: The current RGB observation from the environment.
- `action`: The action predicted by the agent for the current observation.
- `reward`: The received reward from stepping the environment with the current action.
- `done`: If the new observation is the start of a new episode. Obtained after stepping the environment with the current action.
- `truncated`: If the new observation is the start of a new episode due to truncation. Obtained after stepping the environment with the current action.

### Data Splits
The dataset is divided into a `train` (90%) and `test` (10%) split

## Dataset Creation
The dataset was created by training an RL agent with [PPO](https://arxiv.org/abs/1707.06347) for 50M steps in each environment. The trajectories where generated by taking the argmax action at each step, corresponding to taking the mode of the action distribution. Consequently the rollout policy is deterministic.

## Procgen Benchmark
The [Procgen Benchmark](https://openai.com/index/procgen-benchmark/), released by OpenAI, consists of 16 procedurally-generated environments designed to measure how quickly reinforcement learning (RL) agents learn generalizable skills. It emphasizes experimental convenience, high diversity within and across environments, and is ideal for evaluating both sample efficiency and generalization. The benchmark allows for distinct training and test sets in each environment, making it a standard research platform for the OpenAI RL team. It aims to address the need for more diverse RL benchmarks compared to complex environments like Dota and StarCraft.