Etienne-David commited on
Commit
5f157d6
·
verified ·
1 Parent(s): 1d84ead

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +127 -0
README.md CHANGED
@@ -1,3 +1,130 @@
1
  ---
 
 
2
  license: cc-by-4.0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ language:
3
+ - en
4
  license: cc-by-4.0
5
+ task_categories:
6
+ - object-detection
7
+ pretty_name: Global Wheat Head
8
+ tags:
9
+ - agriculture
10
+ - biology
11
+ dataset_info:
12
+ features:
13
+ - name: image
14
+ dtype: image
15
+ - name: domain
16
+ dtype: string
17
+ - name: country
18
+ dtype: string
19
+ - name: location
20
+ dtype: string
21
+ - name: development_stage
22
+ dtype: string
23
+ - name: objects
24
+ struct:
25
+ - name: boxes
26
+ sequence:
27
+ sequence: int64
28
+ - name: categories
29
+ sequence: int64
30
+ splits:
31
+ - name: train
32
+ num_bytes: 701105106.93
33
+ num_examples: 3655
34
+ - name: validation
35
+ num_bytes: 264366740.324
36
+ num_examples: 1476
37
+ - name: test
38
+ num_bytes: 301053063.17
39
+ num_examples: 1381
40
+ download_size: 1260938177
41
+ dataset_size: 1266524910.424
42
+ configs:
43
+ - config_name: default
44
+ data_files:
45
+ - split: train
46
+ path: data/train-*
47
+ - split: validation
48
+ path: data/validation-*
49
+ - split: test
50
+ path: data/test-*
51
  ---
52
+
53
+
54
+ # Dataset Card for "Global Wheat Head Dataset 2021" 😊
55
+
56
+ If you want any update on the Global Wheat Dataset Community, go on https://www.global-wheat.com/
57
+
58
+ ## Table of Contents
59
+ - [Dataset Description](#dataset-description)
60
+ - [Dataset Composition](#dataset-composition)
61
+ - [Usage](#usage)
62
+ - [Citation](#citation)
63
+ - [Acknowledgements](#acknowledgements)
64
+
65
+ ## Dataset Description
66
+
67
+ - **Creators**: Etienne David and others
68
+ - **Published**: July 12, 2021 | Version 1.0
69
+ - **Availability**: [Zenodo Link](https://doi.org/10.5281/zenodo.5092309)
70
+ - **Keywords**: Deep Learning, Wheat Counting, Plant Phenotyping
71
+
72
+ ### Introduction
73
+ Wheat is essential for a large part of humanity. The "Global Wheat Head Dataset 2021" aims to support the development of deep learning models for wheat head detection. This dataset addresses challenges like overlapping plants and varying conditions across global wheat fields. It's a step towards automating plant phenotyping and enhancing agricultural practices. 🌾
74
+
75
+ ### Dataset Composition
76
+ - **Images**: Over 6000, Resolution - 1024x1024 pixels
77
+ - **Annotations**: 300k+ unique wheat heads with bounding boxes
78
+ - **Geographic Coverage**: Images from 11 countries
79
+ - **Domains**: Various, including sensor types and locations
80
+ - **Splits**: Training (Europe & Canada), Test (Other regions)
81
+
82
+ ## Dataset Composition
83
+
84
+ ### Files and Structure
85
+ - **Images**: Folder containing all images (`.png`)
86
+ - **CSV Files**: `competition_train.csv`, `competition_val.csv`, `competition_test.csv` for different dataset splits
87
+ - **Metadata**: `Metadata.csv` with additional details
88
+
89
+ ### Labels
90
+ - **Format**: CSV with columns - image_name, BoxesString, domain
91
+ - **BoxesString**: `[x_min,y_min, x_max,y_max]` format for bounding boxes
92
+ - **Domain**: Specifies the image domain
93
+
94
+ ## Usage
95
+
96
+ ### Tutorials and Resources
97
+ - Tutorials available at [AIcrowd Challenge Page](https://www.aicrowd.com/challenges/global-wheat-challenge-2021)
98
+
99
+ ### License
100
+ - **Type**: Creative Commons Attribution 4.0 International (cc-by-4.0)
101
+ - **Details**: Free to use with attribution
102
+
103
+ ## Citation
104
+
105
+ If you use this dataset in your research, please cite the following:
106
+
107
+ ```bibtex
108
+ @article{david2020global,
109
+ title={Global Wheat Head Detection (GWHD) dataset: a large and diverse dataset of high-resolution RGB-labelled images to develop and benchmark wheat head detection methods},
110
+ author={David, Etienne and others},
111
+ journal={Plant Phenomics},
112
+ volume={2020},
113
+ year={2020},
114
+ publisher={Science Partner Journal}
115
+ }
116
+ @misc{david2021global,
117
+ title={Global Wheat Head Dataset 2021: more diversity to improve the benchmarking of wheat head localization methods},
118
+ author={Etienne David and others},
119
+ year={2021},
120
+ eprint={2105.07660},
121
+ archivePrefix={arXiv},
122
+ primaryClass={cs.CV}
123
+ }
124
+ ```
125
+
126
+ ## Acknowledgements
127
+
128
+ Special thanks to all the contributors, researchers, and institutions that played a pivotal role in the creation of this dataset. Your efforts are helping to advance the field of agricultural sciences and technology. 👏
129
+
130
+