|
from datasets.utils import version |
|
"""TODO(squad_es): Add a description here.""" |
|
|
|
|
|
import json |
|
|
|
import datasets |
|
|
|
|
|
|
|
_CITATION = """\ |
|
@article{2016arXiv160605250R, |
|
author = {Casimiro Pio , Carrino and Marta R. , Costa-jussa and Jose A. R. , Fonollosa}, |
|
title = "{Automatic Spanish Translation of the SQuAD Dataset for Multilingual |
|
Question Answering}", |
|
journal = {arXiv e-prints}, |
|
year = 2019, |
|
eid = {arXiv:1912.05200v1}, |
|
pages = {arXiv:1912.05200v1}, |
|
archivePrefix = {arXiv}, |
|
eprint = {1912.05200v2}, |
|
} |
|
""" |
|
|
|
|
|
_DESCRIPTION = """\ |
|
automatic translation of the Stanford Question Answering Dataset (SQuAD) v2 into Spanish |
|
""" |
|
|
|
_URL = "https://raw.githubusercontent.com/EvelynQuevedo/becas/main/" |
|
_URLS_V1 = { |
|
"train": _URL + "datos/data.json" |
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
class SquadEsConfig(datasets.BuilderConfig): |
|
"""BuilderConfig for SQUADEsV2.""" |
|
|
|
def __init__(self, **kwargs): |
|
"""BuilderConfig for SQUADEsV2. |
|
Args: |
|
**kwargs: keyword arguments forwarded to super. |
|
""" |
|
super(SquadEsConfig, self).__init__(**kwargs) |
|
|
|
|
|
class SquadEs(datasets.GeneratorBasedBuilder): |
|
"""TODO(squad_es): Short description of my dataset.""" |
|
|
|
|
|
VERSION = datasets.Version("0.1.0") |
|
BUILDER_CONFIGS = [ |
|
SquadEsConfig( |
|
name="v1.1.0", |
|
version=datasets.Version("1.1.0", ""), |
|
description="Plain text Spanish squad version 1", |
|
), |
|
|
|
|
|
|
|
|
|
|
|
] |
|
|
|
def _info(self): |
|
|
|
return datasets.DatasetInfo( |
|
|
|
description=_DESCRIPTION, |
|
|
|
features=datasets.Features( |
|
{ |
|
|
|
|
|
"id": datasets.Value("string"), |
|
"title": datasets.Value("string"), |
|
"context": datasets.Value("string"), |
|
"question": datasets.Value("string"), |
|
"answers": datasets.features.Sequence( |
|
{ |
|
"text": datasets.Value("string"), |
|
"answer_start": datasets.Value("int32"), |
|
} |
|
), |
|
} |
|
), |
|
|
|
|
|
|
|
supervised_keys=None, |
|
|
|
homepage="https://github.com/Leo646/Posgrados/tree/master/", |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
"""Returns SplitGenerators.""" |
|
|
|
|
|
|
|
|
|
if self.config.name == "v1.1.0": |
|
dl_dir = dl_manager.download_and_extract(_URLS_V1) |
|
print(dl_dir) |
|
|
|
|
|
else: |
|
raise Exception("version does not match any existing one") |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
|
|
gen_kwargs={"filepath": dl_dir["train"]}, |
|
), |
|
|
|
|
|
|
|
|
|
|
|
] |
|
|
|
def _generate_examples(self, filepath): |
|
"""Yields examples.""" |
|
|
|
with open(filepath, encoding="utf-8") as f: |
|
data = json.load(f) |
|
for example in data["data"]: |
|
title = example.get("title", "").strip() |
|
for paragraph in example["paragraphs"]: |
|
context = paragraph["context"].strip() |
|
for qa in paragraph["qas"]: |
|
question = qa["question"].strip() |
|
id_ = qa["id"] |
|
|
|
answer_starts = [answer["answer_start"] for answer in qa["answers"]] |
|
answers = [answer["text"].strip() for answer in qa["answers"]] |
|
|
|
yield id_, { |
|
"title": title, |
|
"context": context, |
|
"question": question, |
|
"id": id_, |
|
"answers": { |
|
"answer_start": answer_starts, |
|
"text": answers, |
|
|
|
}, |
|
|
|
} |