Datasets:
Tasks:
Text Classification
Sub-tasks:
natural-language-inference
Languages:
English
Size:
10K<n<100K
License:
File size: 5,288 Bytes
de196e7 ecf2698 de196e7 ecf2698 ab91fd6 de196e7 ecf2698 de196e7 ecf2698 de196e7 ab91fd6 ecf2698 de196e7 ecf2698 de196e7 bd382a2 de196e7 ab91fd6 de196e7 ab91fd6 de196e7 4a821a6 de196e7 4a821a6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 |
# coding=utf-8
# Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Lint as: python3
"""OSGD-CD: The OSDG Community Dataset."""
import csv
import json
import datasets
from datasets.tasks import TextClassification
logger = datasets.logging.get_logger(__name__)
_CITATION = """\
@dataset{osdg_2023_8107038,
author = {OSDG and
UNDP IICPSD SDG AI Lab and
PPMI},
title = {OSDG Community Dataset (OSDG-CD)},
month = jul,
year = 2023,
note = {{This CSV file uses UTF-8 character encoding. For
easy access on MS Excel, open the file using Data
→ From Text/CSV. Please split CSV data into
different columns by using a TAB delimiter.}},
publisher = {Zenodo},
version = {2023.07},
doi = {10.5281/zenodo.8107038},
url = {https://doi.org/10.5281/zenodo.8107038}
}
"""
_HOMEPAGE = "https://doi.org/10.5281/zenodo.8107038"
_LICENSE = "https://creativecommons.org/licenses/by/4.0/"
_DESCRIPTION = """\
The OSDG Community Dataset (OSDG-CD) is a public dataset of thousands of text excerpts, \
which were validated by approximately 1,000 OSDG Community Platform (OSDG-CP) \
citizen scientists from over 110 countries, with respect to the Sustainable Development Goals (SDGs).
"""
_VERSIONS = {
"2021.09": "1.0.0",
"2022.01": "1.0.1",
"2022.04": "1.0.2",
"2022.07": "1.0.3",
"2022.10": "1.0.4",
"2023.01": "1.0.5",
"2023.04": "1.0.6",
"2023.07": "1.0.7",
}
_VERSION = _VERSIONS["2023.07"]
_URLS = {
"train": "https://zenodo.org/record/8107038/files/osdg-community-data-v2023-07-01.csv"
}
class OSDGCDConfig(datasets.BuilderConfig):
"""BuilderConfig for OSDG-CD."""
def __init__(self, **kwargs):
"""BuilderConfig for OSDG-CD.
Args:
**kwargs: keyword arguments forwarded to super.
"""
super(OSDGCDConfig, self).__init__(**kwargs)
class OSDGCD(datasets.GeneratorBasedBuilder):
"""OSDG-CD: The OSDG Community Dataset (OSDG-CD)"""
# This is an example of a dataset with multiple configurations.
# If you don't want/need to define several sub-sets in your dataset,
# just remove the BUILDER_CONFIG_CLASS and the BUILDER_CONFIGS attributes.
# If you need to make complex sub-parts in the datasets with configurable options
# You can create your own builder configuration class to store attribute, inheriting from datasets.BuilderConfig
# BUILDER_CONFIG_CLASS = MyBuilderConfig
# You will be able to load one or the other configurations in the following list with
# data = datasets.load_dataset('my_dataset', 'first_domain')
# data = datasets.load_dataset('my_dataset', 'second_domain')
BUILDER_CONFIGS = [
OSDGCDConfig(
name="main_config",
version=datasets.Version(_VERSION, ""),
description="Main configuration",
),
]
DEFAULT_CONFIG_NAME = "main_config"
def _info(self) -> datasets.DatasetInfo:
return datasets.DatasetInfo(
description=_DESCRIPTION,
license=_LICENSE,
features=datasets.Features(
{
"doi": datasets.Value("string"),
"text_id": datasets.Value("string"),
"text": datasets.Value("string"),
"sdg": datasets.Value("uint16"),
"label": datasets.ClassLabel(num_classes=15, names=[f"SDG {sdg}" for sdg in range(1, 16)]),
"labels_negative": datasets.Value("uint16"),
"labels_positive": datasets.Value("uint16"),
"agreement": datasets.Value("float"),
}
),
homepage=_HOMEPAGE,
citation=_CITATION,
task_templates=[
TextClassification(
text_column="text", label_column="label",
)
],
)
def _split_generators(self, dl_manager):
downloaded_files = dl_manager.download_and_extract(_URLS)
return [
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train"]}),
]
def _generate_examples(self, filepath):
"""This function returns the examples in the raw (text) form."""
logger.info("generating examples from = %s", filepath)
key = 0
with open(filepath, encoding="utf-8") as f:
osdg = csv.DictReader(f, delimiter="\t")
for row in osdg:
row["label"] = int(row["sdg"]) - 1
yield key, row
key += 1
|