RASMUS commited on
Commit
4ea1ca5
·
1 Parent(s): df780aa

Upload 4 files

Browse files

Upload processing files

gather_and_final_processing_finnish.ipynb ADDED
@@ -0,0 +1,1501 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "code",
5
+ "execution_count": 4,
6
+ "metadata": {},
7
+ "outputs": [],
8
+ "source": [
9
+ "import pandas as pd\n",
10
+ "import os \n",
11
+ "\n",
12
+ "folders = os.listdir(os.getcwd() + os.sep + 'finnish')\n",
13
+ "\n",
14
+ "paths_to_folders = [os.getcwd() + os.sep + 'finnish' + os.sep + folder for folder in folders]"
15
+ ]
16
+ },
17
+ {
18
+ "cell_type": "code",
19
+ "execution_count": 9,
20
+ "metadata": {},
21
+ "outputs": [],
22
+ "source": [
23
+ "filepaths_all = []\n",
24
+ "for path in paths_to_folders:\n",
25
+ " filepaths = [path + os.sep + file for file in os.listdir(path)]\n",
26
+ " filepaths_all.extend(filepaths)"
27
+ ]
28
+ },
29
+ {
30
+ "cell_type": "code",
31
+ "execution_count": 11,
32
+ "metadata": {},
33
+ "outputs": [],
34
+ "source": [
35
+ "asd = pd.read_parquet(filepaths_all[0])"
36
+ ]
37
+ },
38
+ {
39
+ "cell_type": "code",
40
+ "execution_count": 26,
41
+ "metadata": {},
42
+ "outputs": [],
43
+ "source": [
44
+ "import datetime\n",
45
+ "def add_year_month_time_of_day(row):\n",
46
+ " row['created_utc'] = int(row['created_utc'])\n",
47
+ " dt_utc_native = datetime.datetime.utcfromtimestamp(row['created_utc'])\n",
48
+ " row['year'] = dt_utc_native.year\n",
49
+ " row['day'] = dt_utc_native.day\n",
50
+ " row['month'] = dt_utc_native.month\n",
51
+ " row['time'] = dt_utc_native.strftime(\"%H:%M:%S\")\n",
52
+ " return row"
53
+ ]
54
+ },
55
+ {
56
+ "cell_type": "code",
57
+ "execution_count": 20,
58
+ "metadata": {},
59
+ "outputs": [],
60
+ "source": [
61
+ "df = asd.apply(lambda row: add_year_month_time_of_day(row), axis=1)"
62
+ ]
63
+ },
64
+ {
65
+ "cell_type": "code",
66
+ "execution_count": 27,
67
+ "metadata": {},
68
+ "outputs": [
69
+ {
70
+ "name": "stdout",
71
+ "output_type": "stream",
72
+ "text": [
73
+ "1/1079\n",
74
+ "2/1079\n",
75
+ "3/1079\n",
76
+ "4/1079\n",
77
+ "5/1079\n",
78
+ "6/1079\n",
79
+ "7/1079\n",
80
+ "8/1079\n",
81
+ "9/1079\n",
82
+ "10/1079\n",
83
+ "11/1079\n",
84
+ "12/1079\n",
85
+ "13/1079\n",
86
+ "14/1079\n",
87
+ "15/1079\n",
88
+ "16/1079\n",
89
+ "17/1079\n",
90
+ "18/1079\n",
91
+ "19/1079\n",
92
+ "20/1079\n",
93
+ "21/1079\n",
94
+ "22/1079\n",
95
+ "23/1079\n",
96
+ "24/1079\n",
97
+ "25/1079\n",
98
+ "26/1079\n",
99
+ "27/1079\n",
100
+ "28/1079\n",
101
+ "29/1079\n",
102
+ "30/1079\n",
103
+ "31/1079\n",
104
+ "32/1079\n",
105
+ "33/1079\n",
106
+ "34/1079\n",
107
+ "35/1079\n",
108
+ "36/1079\n",
109
+ "37/1079\n",
110
+ "38/1079\n",
111
+ "39/1079\n",
112
+ "40/1079\n",
113
+ "41/1079\n",
114
+ "42/1079\n",
115
+ "43/1079\n",
116
+ "44/1079\n",
117
+ "45/1079\n",
118
+ "46/1079\n",
119
+ "47/1079\n",
120
+ "48/1079\n",
121
+ "49/1079\n",
122
+ "50/1079\n",
123
+ "51/1079\n",
124
+ "52/1079\n",
125
+ "53/1079\n",
126
+ "54/1079\n",
127
+ "55/1079\n",
128
+ "56/1079\n",
129
+ "57/1079\n",
130
+ "58/1079\n",
131
+ "59/1079\n",
132
+ "60/1079\n",
133
+ "61/1079\n",
134
+ "62/1079\n",
135
+ "63/1079\n",
136
+ "64/1079\n",
137
+ "65/1079\n",
138
+ "66/1079\n",
139
+ "67/1079\n",
140
+ "68/1079\n",
141
+ "69/1079\n",
142
+ "70/1079\n",
143
+ "71/1079\n",
144
+ "72/1079\n",
145
+ "73/1079\n",
146
+ "74/1079\n",
147
+ "75/1079\n",
148
+ "76/1079\n",
149
+ "77/1079\n",
150
+ "78/1079\n",
151
+ "79/1079\n",
152
+ "80/1079\n",
153
+ "81/1079\n",
154
+ "82/1079\n",
155
+ "83/1079\n",
156
+ "84/1079\n",
157
+ "85/1079\n",
158
+ "86/1079\n",
159
+ "87/1079\n",
160
+ "88/1079\n",
161
+ "89/1079\n",
162
+ "90/1079\n",
163
+ "91/1079\n",
164
+ "92/1079\n",
165
+ "93/1079\n",
166
+ "94/1079\n",
167
+ "95/1079\n",
168
+ "96/1079\n",
169
+ "97/1079\n",
170
+ "98/1079\n",
171
+ "99/1079\n",
172
+ "100/1079\n",
173
+ "101/1079\n",
174
+ "102/1079\n",
175
+ "103/1079\n",
176
+ "104/1079\n",
177
+ "105/1079\n",
178
+ "106/1079\n",
179
+ "107/1079\n",
180
+ "108/1079\n",
181
+ "109/1079\n",
182
+ "110/1079\n",
183
+ "111/1079\n",
184
+ "112/1079\n",
185
+ "113/1079\n",
186
+ "114/1079\n",
187
+ "115/1079\n",
188
+ "116/1079\n",
189
+ "117/1079\n",
190
+ "118/1079\n",
191
+ "119/1079\n",
192
+ "120/1079\n",
193
+ "121/1079\n",
194
+ "122/1079\n",
195
+ "123/1079\n",
196
+ "124/1079\n",
197
+ "125/1079\n",
198
+ "126/1079\n",
199
+ "127/1079\n",
200
+ "128/1079\n",
201
+ "129/1079\n",
202
+ "130/1079\n",
203
+ "131/1079\n",
204
+ "132/1079\n",
205
+ "133/1079\n",
206
+ "134/1079\n",
207
+ "135/1079\n",
208
+ "136/1079\n",
209
+ "137/1079\n",
210
+ "138/1079\n",
211
+ "139/1079\n",
212
+ "140/1079\n",
213
+ "141/1079\n",
214
+ "142/1079\n",
215
+ "143/1079\n",
216
+ "144/1079\n",
217
+ "145/1079\n",
218
+ "146/1079\n",
219
+ "147/1079\n",
220
+ "148/1079\n",
221
+ "149/1079\n",
222
+ "150/1079\n",
223
+ "151/1079\n",
224
+ "152/1079\n",
225
+ "153/1079\n",
226
+ "154/1079\n",
227
+ "155/1079\n",
228
+ "156/1079\n",
229
+ "157/1079\n",
230
+ "158/1079\n",
231
+ "159/1079\n",
232
+ "160/1079\n",
233
+ "161/1079\n",
234
+ "162/1079\n",
235
+ "163/1079\n",
236
+ "164/1079\n",
237
+ "165/1079\n",
238
+ "166/1079\n",
239
+ "167/1079\n",
240
+ "168/1079\n",
241
+ "169/1079\n",
242
+ "170/1079\n",
243
+ "171/1079\n",
244
+ "172/1079\n",
245
+ "173/1079\n",
246
+ "174/1079\n",
247
+ "175/1079\n",
248
+ "176/1079\n",
249
+ "177/1079\n",
250
+ "178/1079\n",
251
+ "179/1079\n",
252
+ "180/1079\n",
253
+ "181/1079\n",
254
+ "182/1079\n",
255
+ "183/1079\n",
256
+ "184/1079\n",
257
+ "185/1079\n",
258
+ "186/1079\n",
259
+ "187/1079\n",
260
+ "188/1079\n",
261
+ "189/1079\n",
262
+ "190/1079\n",
263
+ "191/1079\n",
264
+ "192/1079\n",
265
+ "193/1079\n",
266
+ "194/1079\n",
267
+ "195/1079\n",
268
+ "196/1079\n",
269
+ "197/1079\n",
270
+ "198/1079\n",
271
+ "199/1079\n",
272
+ "200/1079\n",
273
+ "201/1079\n",
274
+ "202/1079\n",
275
+ "203/1079\n",
276
+ "204/1079\n",
277
+ "205/1079\n",
278
+ "206/1079\n",
279
+ "207/1079\n",
280
+ "208/1079\n",
281
+ "209/1079\n",
282
+ "210/1079\n",
283
+ "211/1079\n",
284
+ "212/1079\n",
285
+ "213/1079\n",
286
+ "214/1079\n",
287
+ "215/1079\n",
288
+ "216/1079\n",
289
+ "217/1079\n",
290
+ "218/1079\n",
291
+ "219/1079\n",
292
+ "220/1079\n",
293
+ "221/1079\n",
294
+ "222/1079\n",
295
+ "223/1079\n",
296
+ "224/1079\n",
297
+ "225/1079\n",
298
+ "226/1079\n",
299
+ "227/1079\n",
300
+ "228/1079\n",
301
+ "229/1079\n",
302
+ "230/1079\n",
303
+ "231/1079\n",
304
+ "232/1079\n",
305
+ "233/1079\n",
306
+ "234/1079\n",
307
+ "235/1079\n",
308
+ "236/1079\n",
309
+ "237/1079\n",
310
+ "238/1079\n",
311
+ "239/1079\n",
312
+ "240/1079\n",
313
+ "241/1079\n",
314
+ "242/1079\n",
315
+ "243/1079\n",
316
+ "244/1079\n",
317
+ "245/1079\n",
318
+ "246/1079\n",
319
+ "247/1079\n",
320
+ "248/1079\n",
321
+ "249/1079\n",
322
+ "250/1079\n",
323
+ "251/1079\n",
324
+ "252/1079\n",
325
+ "253/1079\n",
326
+ "254/1079\n",
327
+ "255/1079\n",
328
+ "256/1079\n",
329
+ "257/1079\n",
330
+ "258/1079\n",
331
+ "259/1079\n",
332
+ "260/1079\n",
333
+ "261/1079\n",
334
+ "262/1079\n",
335
+ "263/1079\n",
336
+ "264/1079\n",
337
+ "265/1079\n",
338
+ "266/1079\n",
339
+ "267/1079\n",
340
+ "268/1079\n",
341
+ "269/1079\n",
342
+ "270/1079\n",
343
+ "271/1079\n",
344
+ "272/1079\n",
345
+ "273/1079\n",
346
+ "274/1079\n",
347
+ "275/1079\n",
348
+ "276/1079\n",
349
+ "277/1079\n",
350
+ "278/1079\n",
351
+ "279/1079\n",
352
+ "280/1079\n",
353
+ "281/1079\n",
354
+ "282/1079\n",
355
+ "283/1079\n",
356
+ "284/1079\n",
357
+ "285/1079\n",
358
+ "286/1079\n",
359
+ "287/1079\n",
360
+ "288/1079\n",
361
+ "289/1079\n",
362
+ "290/1079\n",
363
+ "291/1079\n",
364
+ "292/1079\n",
365
+ "293/1079\n",
366
+ "294/1079\n",
367
+ "295/1079\n",
368
+ "296/1079\n",
369
+ "297/1079\n",
370
+ "298/1079\n",
371
+ "299/1079\n",
372
+ "300/1079\n",
373
+ "301/1079\n",
374
+ "302/1079\n",
375
+ "303/1079\n",
376
+ "304/1079\n",
377
+ "305/1079\n",
378
+ "306/1079\n",
379
+ "307/1079\n",
380
+ "308/1079\n",
381
+ "309/1079\n",
382
+ "310/1079\n",
383
+ "311/1079\n",
384
+ "312/1079\n",
385
+ "313/1079\n",
386
+ "314/1079\n",
387
+ "315/1079\n",
388
+ "316/1079\n",
389
+ "317/1079\n",
390
+ "318/1079\n",
391
+ "319/1079\n",
392
+ "320/1079\n",
393
+ "321/1079\n",
394
+ "322/1079\n",
395
+ "323/1079\n",
396
+ "324/1079\n",
397
+ "325/1079\n",
398
+ "326/1079\n",
399
+ "327/1079\n",
400
+ "328/1079\n",
401
+ "329/1079\n",
402
+ "330/1079\n",
403
+ "331/1079\n",
404
+ "332/1079\n",
405
+ "333/1079\n",
406
+ "334/1079\n",
407
+ "335/1079\n",
408
+ "336/1079\n",
409
+ "337/1079\n",
410
+ "338/1079\n",
411
+ "339/1079\n",
412
+ "340/1079\n",
413
+ "341/1079\n",
414
+ "342/1079\n",
415
+ "343/1079\n",
416
+ "344/1079\n",
417
+ "345/1079\n",
418
+ "346/1079\n",
419
+ "347/1079\n",
420
+ "348/1079\n",
421
+ "349/1079\n",
422
+ "350/1079\n",
423
+ "351/1079\n",
424
+ "352/1079\n",
425
+ "353/1079\n",
426
+ "354/1079\n",
427
+ "355/1079\n",
428
+ "356/1079\n",
429
+ "357/1079\n",
430
+ "358/1079\n",
431
+ "359/1079\n",
432
+ "360/1079\n",
433
+ "361/1079\n",
434
+ "362/1079\n",
435
+ "363/1079\n",
436
+ "364/1079\n",
437
+ "365/1079\n",
438
+ "366/1079\n",
439
+ "367/1079\n",
440
+ "368/1079\n",
441
+ "369/1079\n",
442
+ "370/1079\n",
443
+ "371/1079\n",
444
+ "372/1079\n",
445
+ "373/1079\n",
446
+ "374/1079\n",
447
+ "375/1079\n",
448
+ "376/1079\n",
449
+ "377/1079\n",
450
+ "378/1079\n",
451
+ "379/1079\n",
452
+ "380/1079\n",
453
+ "381/1079\n",
454
+ "382/1079\n",
455
+ "383/1079\n",
456
+ "384/1079\n",
457
+ "385/1079\n",
458
+ "386/1079\n",
459
+ "387/1079\n",
460
+ "388/1079\n",
461
+ "389/1079\n",
462
+ "390/1079\n",
463
+ "391/1079\n",
464
+ "392/1079\n",
465
+ "393/1079\n",
466
+ "394/1079\n",
467
+ "395/1079\n",
468
+ "396/1079\n",
469
+ "397/1079\n",
470
+ "398/1079\n",
471
+ "399/1079\n",
472
+ "400/1079\n",
473
+ "401/1079\n",
474
+ "402/1079\n",
475
+ "403/1079\n",
476
+ "404/1079\n",
477
+ "405/1079\n",
478
+ "406/1079\n",
479
+ "407/1079\n",
480
+ "408/1079\n",
481
+ "409/1079\n",
482
+ "410/1079\n",
483
+ "411/1079\n",
484
+ "412/1079\n",
485
+ "413/1079\n",
486
+ "414/1079\n",
487
+ "415/1079\n",
488
+ "416/1079\n",
489
+ "417/1079\n",
490
+ "418/1079\n",
491
+ "419/1079\n",
492
+ "420/1079\n",
493
+ "421/1079\n",
494
+ "422/1079\n",
495
+ "423/1079\n",
496
+ "424/1079\n",
497
+ "425/1079\n",
498
+ "426/1079\n",
499
+ "427/1079\n",
500
+ "428/1079\n",
501
+ "429/1079\n",
502
+ "430/1079\n",
503
+ "431/1079\n",
504
+ "432/1079\n",
505
+ "433/1079\n",
506
+ "434/1079\n",
507
+ "435/1079\n",
508
+ "436/1079\n",
509
+ "437/1079\n",
510
+ " subreddit created_utc score \\\n",
511
+ "0 Suomi 1546181040 57 \n",
512
+ "1 Suomi 1546181271 15 \n",
513
+ "2 Suomi 1546181411 9 \n",
514
+ "3 Suomi 1546181411 0 \n",
515
+ "4 Suomi 1546181804 1 \n",
516
+ "\n",
517
+ " body predicted_language \\\n",
518
+ "0 Kylläpä Suomi törkeästi provosoi Venäjää. Onne... __label__fi \n",
519
+ "1 Vittu! Mun verorahoilla taas paskaa ostettu. O... __label__fi \n",
520
+ "2 Mutta ajattelitteko ollenkaan luontoa ennen ku... __label__fi \n",
521
+ "3 Sekin olis kova.\\nDas Boot u-612 liian legend... __label__fi \n",
522
+ "4 Voisi kieltää kaikkien henkeen vedettävien ain... __label__fi \n",
523
+ "\n",
524
+ " probability year day month time \n",
525
+ "0 0.998374 2018 30 12 14:44:00 \n",
526
+ "1 0.999526 2018 30 12 14:47:51 \n",
527
+ "2 0.989323 2018 30 12 14:50:11 \n",
528
+ "3 0.895473 2018 30 12 14:50:11 \n",
529
+ "4 0.998957 2018 30 12 14:56:44 \n",
530
+ "438/1079\n",
531
+ "439/1079\n",
532
+ "440/1079\n",
533
+ "441/1079\n",
534
+ "442/1079\n",
535
+ "443/1079\n",
536
+ "444/1079\n",
537
+ "445/1079\n",
538
+ "446/1079\n",
539
+ "447/1079\n",
540
+ "448/1079\n",
541
+ "449/1079\n",
542
+ "450/1079\n",
543
+ "451/1079\n",
544
+ "452/1079\n",
545
+ "453/1079\n",
546
+ "454/1079\n",
547
+ "455/1079\n",
548
+ "456/1079\n",
549
+ "457/1079\n",
550
+ "458/1079\n",
551
+ "459/1079\n",
552
+ "460/1079\n",
553
+ "461/1079\n",
554
+ "462/1079\n",
555
+ "463/1079\n",
556
+ "464/1079\n",
557
+ "465/1079\n",
558
+ "466/1079\n",
559
+ "467/1079\n",
560
+ "468/1079\n",
561
+ "469/1079\n",
562
+ "470/1079\n",
563
+ "471/1079\n",
564
+ "472/1079\n",
565
+ "473/1079\n",
566
+ "474/1079\n",
567
+ "475/1079\n",
568
+ "476/1079\n",
569
+ "477/1079\n",
570
+ "478/1079\n",
571
+ "479/1079\n",
572
+ "480/1079\n",
573
+ "481/1079\n",
574
+ "482/1079\n",
575
+ "483/1079\n",
576
+ "484/1079\n",
577
+ "485/1079\n",
578
+ "486/1079\n",
579
+ "487/1079\n",
580
+ "488/1079\n",
581
+ "489/1079\n",
582
+ "490/1079\n",
583
+ "491/1079\n",
584
+ "492/1079\n",
585
+ "493/1079\n",
586
+ "494/1079\n",
587
+ "495/1079\n",
588
+ "496/1079\n",
589
+ "497/1079\n",
590
+ "498/1079\n",
591
+ "499/1079\n",
592
+ "500/1079\n",
593
+ "501/1079\n",
594
+ "502/1079\n",
595
+ "503/1079\n",
596
+ "504/1079\n",
597
+ "505/1079\n",
598
+ "506/1079\n",
599
+ "507/1079\n",
600
+ "508/1079\n",
601
+ "509/1079\n",
602
+ "510/1079\n",
603
+ "511/1079\n",
604
+ "512/1079\n",
605
+ "513/1079\n",
606
+ "514/1079\n",
607
+ "515/1079\n",
608
+ "516/1079\n",
609
+ "517/1079\n",
610
+ "518/1079\n",
611
+ "519/1079\n",
612
+ "520/1079\n",
613
+ "521/1079\n",
614
+ "522/1079\n",
615
+ "523/1079\n",
616
+ "524/1079\n",
617
+ "525/1079\n",
618
+ "526/1079\n",
619
+ "527/1079\n",
620
+ "528/1079\n",
621
+ "529/1079\n",
622
+ "530/1079\n",
623
+ "531/1079\n",
624
+ "532/1079\n",
625
+ "533/1079\n",
626
+ "534/1079\n",
627
+ "535/1079\n",
628
+ "536/1079\n",
629
+ "537/1079\n",
630
+ "538/1079\n",
631
+ "539/1079\n",
632
+ "540/1079\n",
633
+ "541/1079\n",
634
+ "542/1079\n",
635
+ "543/1079\n",
636
+ "544/1079\n",
637
+ "545/1079\n",
638
+ "546/1079\n",
639
+ "547/1079\n",
640
+ "548/1079\n",
641
+ "549/1079\n",
642
+ "550/1079\n",
643
+ "551/1079\n",
644
+ "552/1079\n",
645
+ "553/1079\n",
646
+ "554/1079\n",
647
+ "555/1079\n",
648
+ "556/1079\n",
649
+ "557/1079\n",
650
+ "558/1079\n",
651
+ "559/1079\n",
652
+ "560/1079\n",
653
+ "561/1079\n",
654
+ "562/1079\n",
655
+ "563/1079\n",
656
+ "564/1079\n",
657
+ "565/1079\n",
658
+ "566/1079\n",
659
+ "567/1079\n",
660
+ "568/1079\n",
661
+ "569/1079\n",
662
+ "570/1079\n",
663
+ "571/1079\n",
664
+ "572/1079\n",
665
+ "573/1079\n",
666
+ "574/1079\n",
667
+ "575/1079\n",
668
+ "576/1079\n",
669
+ "577/1079\n",
670
+ "578/1079\n",
671
+ "579/1079\n",
672
+ "580/1079\n",
673
+ "581/1079\n",
674
+ "582/1079\n",
675
+ "583/1079\n",
676
+ "584/1079\n",
677
+ "585/1079\n",
678
+ "586/1079\n",
679
+ "587/1079\n",
680
+ "588/1079\n",
681
+ "589/1079\n",
682
+ "590/1079\n",
683
+ "591/1079\n",
684
+ "592/1079\n",
685
+ "593/1079\n",
686
+ "594/1079\n",
687
+ "595/1079\n",
688
+ "596/1079\n",
689
+ "597/1079\n",
690
+ "598/1079\n",
691
+ "599/1079\n",
692
+ "600/1079\n",
693
+ "601/1079\n",
694
+ "602/1079\n",
695
+ "603/1079\n",
696
+ "604/1079\n",
697
+ "605/1079\n",
698
+ "606/1079\n",
699
+ "607/1079\n",
700
+ "608/1079\n",
701
+ "609/1079\n",
702
+ "610/1079\n",
703
+ "611/1079\n",
704
+ "612/1079\n",
705
+ "613/1079\n",
706
+ "614/1079\n",
707
+ "615/1079\n",
708
+ "616/1079\n",
709
+ "617/1079\n",
710
+ "618/1079\n",
711
+ "619/1079\n",
712
+ "620/1079\n",
713
+ "621/1079\n",
714
+ "622/1079\n",
715
+ "623/1079\n",
716
+ "624/1079\n",
717
+ "625/1079\n",
718
+ "626/1079\n",
719
+ "627/1079\n",
720
+ "628/1079\n",
721
+ "629/1079\n",
722
+ "630/1079\n",
723
+ "631/1079\n",
724
+ "632/1079\n",
725
+ "633/1079\n",
726
+ "634/1079\n",
727
+ "635/1079\n",
728
+ "636/1079\n",
729
+ "637/1079\n",
730
+ "638/1079\n",
731
+ "639/1079\n",
732
+ "640/1079\n",
733
+ "641/1079\n",
734
+ "642/1079\n",
735
+ "643/1079\n",
736
+ "644/1079\n",
737
+ "645/1079\n",
738
+ "646/1079\n",
739
+ "647/1079\n",
740
+ "648/1079\n",
741
+ "649/1079\n",
742
+ "650/1079\n",
743
+ "651/1079\n",
744
+ "652/1079\n",
745
+ "653/1079\n",
746
+ "654/1079\n",
747
+ "655/1079\n",
748
+ "656/1079\n",
749
+ "657/1079\n",
750
+ "658/1079\n",
751
+ "659/1079\n",
752
+ "660/1079\n",
753
+ "661/1079\n",
754
+ "662/1079\n",
755
+ "663/1079\n",
756
+ "664/1079\n",
757
+ "665/1079\n",
758
+ "666/1079\n",
759
+ "667/1079\n",
760
+ "668/1079\n",
761
+ "669/1079\n",
762
+ "670/1079\n",
763
+ "671/1079\n",
764
+ "672/1079\n",
765
+ "673/1079\n",
766
+ "674/1079\n",
767
+ "675/1079\n",
768
+ "676/1079\n",
769
+ "677/1079\n",
770
+ "678/1079\n",
771
+ "679/1079\n",
772
+ "680/1079\n",
773
+ "681/1079\n",
774
+ "682/1079\n",
775
+ "683/1079\n",
776
+ "684/1079\n",
777
+ "685/1079\n",
778
+ "686/1079\n",
779
+ "687/1079\n",
780
+ "688/1079\n",
781
+ "689/1079\n",
782
+ "690/1079\n",
783
+ "691/1079\n",
784
+ "692/1079\n",
785
+ "693/1079\n",
786
+ "694/1079\n",
787
+ "695/1079\n",
788
+ "696/1079\n",
789
+ "697/1079\n",
790
+ "698/1079\n",
791
+ "699/1079\n",
792
+ "700/1079\n",
793
+ "701/1079\n",
794
+ "702/1079\n",
795
+ "703/1079\n",
796
+ "704/1079\n",
797
+ "705/1079\n",
798
+ "706/1079\n",
799
+ "707/1079\n",
800
+ "708/1079\n",
801
+ "709/1079\n",
802
+ "710/1079\n",
803
+ "711/1079\n",
804
+ "712/1079\n",
805
+ "713/1079\n",
806
+ "714/1079\n",
807
+ "715/1079\n",
808
+ "716/1079\n",
809
+ "717/1079\n",
810
+ "718/1079\n",
811
+ "719/1079\n",
812
+ "720/1079\n",
813
+ "721/1079\n",
814
+ "722/1079\n",
815
+ "723/1079\n",
816
+ "724/1079\n",
817
+ "725/1079\n",
818
+ "726/1079\n",
819
+ "727/1079\n",
820
+ "728/1079\n",
821
+ "729/1079\n",
822
+ "730/1079\n",
823
+ "731/1079\n",
824
+ "732/1079\n",
825
+ "733/1079\n",
826
+ "734/1079\n",
827
+ "735/1079\n",
828
+ "736/1079\n",
829
+ "737/1079\n",
830
+ "738/1079\n",
831
+ "739/1079\n",
832
+ "740/1079\n",
833
+ "741/1079\n",
834
+ "742/1079\n",
835
+ "743/1079\n",
836
+ "744/1079\n",
837
+ "745/1079\n",
838
+ "746/1079\n",
839
+ "747/1079\n",
840
+ "748/1079\n",
841
+ "749/1079\n",
842
+ "750/1079\n",
843
+ "751/1079\n",
844
+ "752/1079\n",
845
+ "753/1079\n",
846
+ "754/1079\n",
847
+ "755/1079\n",
848
+ "756/1079\n",
849
+ "757/1079\n",
850
+ "758/1079\n",
851
+ "759/1079\n",
852
+ "760/1079\n",
853
+ "761/1079\n",
854
+ "762/1079\n",
855
+ "763/1079\n",
856
+ "764/1079\n",
857
+ "765/1079\n",
858
+ "766/1079\n",
859
+ "767/1079\n",
860
+ "768/1079\n",
861
+ "769/1079\n",
862
+ "770/1079\n",
863
+ "771/1079\n",
864
+ "772/1079\n",
865
+ "773/1079\n",
866
+ "774/1079\n",
867
+ "775/1079\n",
868
+ "776/1079\n",
869
+ "777/1079\n",
870
+ "778/1079\n",
871
+ "779/1079\n",
872
+ "780/1079\n",
873
+ "781/1079\n",
874
+ "782/1079\n",
875
+ "783/1079\n",
876
+ "784/1079\n",
877
+ "785/1079\n",
878
+ "786/1079\n",
879
+ "787/1079\n",
880
+ "788/1079\n",
881
+ "789/1079\n",
882
+ "790/1079\n",
883
+ "791/1079\n",
884
+ "792/1079\n",
885
+ "793/1079\n",
886
+ "794/1079\n",
887
+ "795/1079\n",
888
+ "796/1079\n",
889
+ "797/1079\n",
890
+ "798/1079\n",
891
+ "799/1079\n",
892
+ "800/1079\n",
893
+ "801/1079\n",
894
+ "802/1079\n",
895
+ "803/1079\n",
896
+ "804/1079\n",
897
+ "805/1079\n",
898
+ "806/1079\n",
899
+ "807/1079\n",
900
+ "808/1079\n",
901
+ "809/1079\n",
902
+ "810/1079\n",
903
+ "811/1079\n",
904
+ "812/1079\n",
905
+ "813/1079\n",
906
+ "814/1079\n",
907
+ "815/1079\n",
908
+ "816/1079\n",
909
+ "817/1079\n",
910
+ "818/1079\n",
911
+ "819/1079\n",
912
+ "820/1079\n",
913
+ "821/1079\n",
914
+ "822/1079\n",
915
+ "823/1079\n",
916
+ "824/1079\n",
917
+ "825/1079\n",
918
+ "826/1079\n",
919
+ "827/1079\n",
920
+ "828/1079\n",
921
+ "829/1079\n",
922
+ "830/1079\n",
923
+ "831/1079\n",
924
+ "832/1079\n",
925
+ "833/1079\n",
926
+ "834/1079\n",
927
+ "835/1079\n",
928
+ "836/1079\n",
929
+ "837/1079\n",
930
+ "838/1079\n",
931
+ "839/1079\n",
932
+ "840/1079\n",
933
+ "841/1079\n",
934
+ "842/1079\n",
935
+ "843/1079\n",
936
+ "844/1079\n",
937
+ "845/1079\n",
938
+ "846/1079\n",
939
+ "847/1079\n",
940
+ "848/1079\n",
941
+ "849/1079\n",
942
+ "850/1079\n",
943
+ "851/1079\n",
944
+ "852/1079\n",
945
+ "853/1079\n",
946
+ "854/1079\n",
947
+ "855/1079\n",
948
+ "856/1079\n",
949
+ "857/1079\n",
950
+ "858/1079\n",
951
+ "859/1079\n",
952
+ "860/1079\n",
953
+ "861/1079\n",
954
+ "862/1079\n",
955
+ "863/1079\n",
956
+ "864/1079\n",
957
+ "865/1079\n",
958
+ "866/1079\n",
959
+ "867/1079\n",
960
+ "868/1079\n",
961
+ "869/1079\n",
962
+ "870/1079\n",
963
+ "871/1079\n",
964
+ "872/1079\n",
965
+ "873/1079\n",
966
+ "874/1079\n",
967
+ "875/1079\n",
968
+ "876/1079\n",
969
+ "877/1079\n",
970
+ "878/1079\n",
971
+ "879/1079\n",
972
+ "880/1079\n",
973
+ "881/1079\n",
974
+ "882/1079\n",
975
+ "883/1079\n",
976
+ "884/1079\n",
977
+ "885/1079\n",
978
+ "886/1079\n",
979
+ "887/1079\n",
980
+ "888/1079\n",
981
+ "889/1079\n",
982
+ "890/1079\n",
983
+ "891/1079\n",
984
+ "892/1079\n",
985
+ "893/1079\n",
986
+ "894/1079\n",
987
+ "895/1079\n",
988
+ "896/1079\n",
989
+ "897/1079\n",
990
+ "898/1079\n",
991
+ "899/1079\n",
992
+ "900/1079\n",
993
+ "901/1079\n",
994
+ "902/1079\n",
995
+ "903/1079\n",
996
+ "904/1079\n",
997
+ "905/1079\n",
998
+ "906/1079\n",
999
+ "907/1079\n",
1000
+ "908/1079\n",
1001
+ "909/1079\n",
1002
+ "910/1079\n",
1003
+ "911/1079\n",
1004
+ "912/1079\n",
1005
+ "913/1079\n",
1006
+ "914/1079\n",
1007
+ "915/1079\n",
1008
+ "916/1079\n",
1009
+ "917/1079\n",
1010
+ "918/1079\n",
1011
+ "919/1079\n",
1012
+ "920/1079\n",
1013
+ "921/1079\n",
1014
+ "922/1079\n",
1015
+ "923/1079\n",
1016
+ "924/1079\n",
1017
+ "925/1079\n",
1018
+ "926/1079\n",
1019
+ "927/1079\n",
1020
+ "928/1079\n",
1021
+ "929/1079\n",
1022
+ "930/1079\n",
1023
+ "931/1079\n",
1024
+ "932/1079\n",
1025
+ "933/1079\n",
1026
+ "934/1079\n",
1027
+ "935/1079\n",
1028
+ "936/1079\n",
1029
+ "937/1079\n",
1030
+ "938/1079\n",
1031
+ "939/1079\n",
1032
+ "940/1079\n",
1033
+ "941/1079\n",
1034
+ "942/1079\n",
1035
+ "943/1079\n",
1036
+ "944/1079\n",
1037
+ "945/1079\n",
1038
+ "946/1079\n",
1039
+ "947/1079\n",
1040
+ "948/1079\n",
1041
+ "949/1079\n",
1042
+ "950/1079\n",
1043
+ "951/1079\n",
1044
+ "952/1079\n",
1045
+ "953/1079\n",
1046
+ "954/1079\n",
1047
+ "955/1079\n",
1048
+ "956/1079\n",
1049
+ "957/1079\n",
1050
+ "958/1079\n",
1051
+ "959/1079\n",
1052
+ "960/1079\n",
1053
+ "961/1079\n",
1054
+ "962/1079\n",
1055
+ "963/1079\n",
1056
+ "964/1079\n",
1057
+ "965/1079\n",
1058
+ "966/1079\n",
1059
+ "967/1079\n",
1060
+ "968/1079\n",
1061
+ "969/1079\n",
1062
+ "970/1079\n",
1063
+ "971/1079\n",
1064
+ "972/1079\n",
1065
+ "973/1079\n",
1066
+ "974/1079\n",
1067
+ "975/1079\n",
1068
+ "976/1079\n",
1069
+ "977/1079\n",
1070
+ "978/1079\n",
1071
+ "979/1079\n",
1072
+ "980/1079\n",
1073
+ "981/1079\n",
1074
+ "982/1079\n",
1075
+ "983/1079\n",
1076
+ "984/1079\n",
1077
+ "985/1079\n",
1078
+ "986/1079\n",
1079
+ "987/1079\n",
1080
+ "988/1079\n",
1081
+ "989/1079\n",
1082
+ "990/1079\n",
1083
+ "991/1079\n",
1084
+ "992/1079\n",
1085
+ "993/1079\n",
1086
+ "994/1079\n",
1087
+ "995/1079\n",
1088
+ "996/1079\n",
1089
+ "997/1079\n",
1090
+ "998/1079\n",
1091
+ "999/1079\n",
1092
+ "1000/1079\n",
1093
+ "1001/1079\n",
1094
+ "1002/1079\n",
1095
+ "1003/1079\n",
1096
+ "1004/1079\n",
1097
+ "1005/1079\n",
1098
+ "1006/1079\n",
1099
+ "1007/1079\n",
1100
+ "1008/1079\n",
1101
+ "1009/1079\n",
1102
+ "1010/1079\n",
1103
+ "1011/1079\n",
1104
+ "1012/1079\n",
1105
+ "1013/1079\n",
1106
+ "1014/1079\n",
1107
+ "1015/1079\n",
1108
+ "1016/1079\n",
1109
+ "1017/1079\n",
1110
+ "1018/1079\n",
1111
+ "1019/1079\n",
1112
+ "1020/1079\n",
1113
+ "1021/1079\n",
1114
+ "1022/1079\n",
1115
+ "1023/1079\n",
1116
+ "1024/1079\n",
1117
+ "1025/1079\n",
1118
+ "1026/1079\n",
1119
+ "1027/1079\n",
1120
+ "1028/1079\n",
1121
+ "1029/1079\n",
1122
+ "1030/1079\n",
1123
+ "1031/1079\n",
1124
+ "1032/1079\n",
1125
+ "1033/1079\n",
1126
+ "1034/1079\n",
1127
+ "1035/1079\n",
1128
+ "1036/1079\n",
1129
+ "1037/1079\n",
1130
+ "1038/1079\n",
1131
+ "1039/1079\n",
1132
+ "1040/1079\n",
1133
+ "1041/1079\n",
1134
+ "1042/1079\n",
1135
+ "1043/1079\n",
1136
+ "1044/1079\n",
1137
+ "1045/1079\n",
1138
+ "1046/1079\n",
1139
+ "1047/1079\n",
1140
+ "1048/1079\n",
1141
+ "1049/1079\n",
1142
+ "1050/1079\n",
1143
+ "1051/1079\n",
1144
+ "1052/1079\n",
1145
+ "1053/1079\n",
1146
+ "1054/1079\n",
1147
+ "1055/1079\n",
1148
+ "1056/1079\n",
1149
+ "1057/1079\n",
1150
+ "1058/1079\n",
1151
+ "1059/1079\n",
1152
+ "1060/1079\n",
1153
+ "1061/1079\n",
1154
+ "1062/1079\n",
1155
+ "1063/1079\n",
1156
+ "1064/1079\n",
1157
+ "1065/1079\n",
1158
+ "1066/1079\n",
1159
+ "1067/1079\n",
1160
+ "1068/1079\n",
1161
+ "1069/1079\n",
1162
+ "1070/1079\n",
1163
+ "1071/1079\n",
1164
+ "1072/1079\n",
1165
+ "1073/1079\n",
1166
+ "1074/1079\n",
1167
+ "1075/1079\n",
1168
+ "1076/1079\n",
1169
+ "1077/1079\n",
1170
+ "1078/1079\n",
1171
+ "1079/1079\n"
1172
+ ]
1173
+ }
1174
+ ],
1175
+ "source": [
1176
+ "for i, filepath in enumerate(filepaths_all):\n",
1177
+ " print(f\"{i+1}/{len(filepaths_all)}\")\n",
1178
+ " try:\n",
1179
+ " if i == 0:\n",
1180
+ " df_all = pd.read_parquet(filepath)\n",
1181
+ " df_all = df_all.apply(lambda row: add_year_month_time_of_day(row), axis=1)\n",
1182
+ " else:\n",
1183
+ " df_new = pd.read_parquet(filepath)\n",
1184
+ " df_new = df_new.apply(lambda row: add_year_month_time_of_day(row), axis=1)\n",
1185
+ " df_all = pd.concat([df_new, df_all])\n",
1186
+ " except Exception as e:\n",
1187
+ " print(df_new.head())"
1188
+ ]
1189
+ },
1190
+ {
1191
+ "cell_type": "code",
1192
+ "execution_count": 29,
1193
+ "metadata": {},
1194
+ "outputs": [],
1195
+ "source": [
1196
+ "df_all.to_csv('data_all_fi.csv')"
1197
+ ]
1198
+ },
1199
+ {
1200
+ "cell_type": "code",
1201
+ "execution_count": 30,
1202
+ "metadata": {},
1203
+ "outputs": [
1204
+ {
1205
+ "data": {
1206
+ "text/plain": [
1207
+ "4476667"
1208
+ ]
1209
+ },
1210
+ "execution_count": 30,
1211
+ "metadata": {},
1212
+ "output_type": "execute_result"
1213
+ }
1214
+ ],
1215
+ "source": [
1216
+ "len(df_all)"
1217
+ ]
1218
+ },
1219
+ {
1220
+ "cell_type": "code",
1221
+ "execution_count": 3,
1222
+ "metadata": {},
1223
+ "outputs": [],
1224
+ "source": [
1225
+ "from datasets import load_dataset"
1226
+ ]
1227
+ },
1228
+ {
1229
+ "cell_type": "code",
1230
+ "execution_count": 5,
1231
+ "metadata": {},
1232
+ "outputs": [
1233
+ {
1234
+ "name": "stderr",
1235
+ "output_type": "stream",
1236
+ "text": [
1237
+ "Using custom data configuration .-e14a2d6b4b35a498\n"
1238
+ ]
1239
+ },
1240
+ {
1241
+ "name": "stdout",
1242
+ "output_type": "stream",
1243
+ "text": [
1244
+ "Downloading and preparing dataset csv/. to G:/hf_cache/csv/.-e14a2d6b4b35a498/0.0.0/6b34fb8fcf56f7c8ba51dc895bfa2bfbe43546f190a60fcf74bb5e8afdcc2317...\n"
1245
+ ]
1246
+ },
1247
+ {
1248
+ "data": {
1249
+ "application/vnd.jupyter.widget-view+json": {
1250
+ "model_id": "73a198a7d22b4a95af5a5b9fab487982",
1251
+ "version_major": 2,
1252
+ "version_minor": 0
1253
+ },
1254
+ "text/plain": [
1255
+ "Downloading data files: 0%| | 0/1 [00:00<?, ?it/s]"
1256
+ ]
1257
+ },
1258
+ "metadata": {},
1259
+ "output_type": "display_data"
1260
+ },
1261
+ {
1262
+ "name": "stderr",
1263
+ "output_type": "stream",
1264
+ "text": [
1265
+ "Computing checksums of downloaded files. They can be used for integrity verification. You can disable this by passing ignore_verifications=True to load_dataset\n"
1266
+ ]
1267
+ },
1268
+ {
1269
+ "data": {
1270
+ "application/vnd.jupyter.widget-view+json": {
1271
+ "model_id": "00e54b096f564f29b7e202992787777c",
1272
+ "version_major": 2,
1273
+ "version_minor": 0
1274
+ },
1275
+ "text/plain": [
1276
+ "Computing checksums: 100%|##########| 1/1 [00:14<00:00, 14.46s/it]"
1277
+ ]
1278
+ },
1279
+ "metadata": {},
1280
+ "output_type": "display_data"
1281
+ },
1282
+ {
1283
+ "data": {
1284
+ "application/vnd.jupyter.widget-view+json": {
1285
+ "model_id": "796b345e120e43e6a63ac5c0f03564f5",
1286
+ "version_major": 2,
1287
+ "version_minor": 0
1288
+ },
1289
+ "text/plain": [
1290
+ "Extracting data files: 0%| | 0/1 [00:00<?, ?it/s]"
1291
+ ]
1292
+ },
1293
+ "metadata": {},
1294
+ "output_type": "display_data"
1295
+ },
1296
+ {
1297
+ "data": {
1298
+ "application/vnd.jupyter.widget-view+json": {
1299
+ "model_id": "31f5d33610af4973b456c7dbb04d2854",
1300
+ "version_major": 2,
1301
+ "version_minor": 0
1302
+ },
1303
+ "text/plain": [
1304
+ "Generating train split: 0 examples [00:00, ? examples/s]"
1305
+ ]
1306
+ },
1307
+ "metadata": {},
1308
+ "output_type": "display_data"
1309
+ },
1310
+ {
1311
+ "name": "stderr",
1312
+ "output_type": "stream",
1313
+ "text": [
1314
+ "f:\\tools\\Anaconda3\\envs\\redditEnv\\lib\\site-packages\\datasets\\download\\streaming_download_manager.py:776: FutureWarning: the 'mangle_dupe_cols' keyword is deprecated and will be removed in a future version. Please take steps to stop the use of 'mangle_dupe_cols'\n",
1315
+ " return pd.read_csv(xopen(filepath_or_buffer, \"rb\", use_auth_token=use_auth_token), **kwargs)\n"
1316
+ ]
1317
+ },
1318
+ {
1319
+ "name": "stdout",
1320
+ "output_type": "stream",
1321
+ "text": [
1322
+ "Dataset csv downloaded and prepared to G:/hf_cache/csv/.-e14a2d6b4b35a498/0.0.0/6b34fb8fcf56f7c8ba51dc895bfa2bfbe43546f190a60fcf74bb5e8afdcc2317. Subsequent calls will reuse this data.\n"
1323
+ ]
1324
+ }
1325
+ ],
1326
+ "source": [
1327
+ "dataset = load_dataset(path= './',data_files='data_all_fi.csv', split='train')"
1328
+ ]
1329
+ },
1330
+ {
1331
+ "cell_type": "code",
1332
+ "execution_count": 6,
1333
+ "metadata": {},
1334
+ "outputs": [
1335
+ {
1336
+ "data": {
1337
+ "application/vnd.jupyter.widget-view+json": {
1338
+ "model_id": "b1fc27d6c8ed400fbc65c5b7db5a0967",
1339
+ "version_major": 2,
1340
+ "version_minor": 0
1341
+ },
1342
+ "text/plain": [
1343
+ "Pushing dataset shards to the dataset hub: 0%| | 0/4 [00:00<?, ?it/s]"
1344
+ ]
1345
+ },
1346
+ "metadata": {},
1347
+ "output_type": "display_data"
1348
+ },
1349
+ {
1350
+ "data": {
1351
+ "application/vnd.jupyter.widget-view+json": {
1352
+ "model_id": "b672db855ab948709e7f4c0624d26842",
1353
+ "version_major": 2,
1354
+ "version_minor": 0
1355
+ },
1356
+ "text/plain": [
1357
+ "Creating parquet from Arrow format: 0%| | 0/1120 [00:00<?, ?ba/s]"
1358
+ ]
1359
+ },
1360
+ "metadata": {},
1361
+ "output_type": "display_data"
1362
+ },
1363
+ {
1364
+ "data": {
1365
+ "application/vnd.jupyter.widget-view+json": {
1366
+ "model_id": "11eaa5fb2e0e49ceb5fa1afa09208337",
1367
+ "version_major": 2,
1368
+ "version_minor": 0
1369
+ },
1370
+ "text/plain": [
1371
+ "Upload 1 LFS files: 0%| | 0/1 [00:00<?, ?it/s]"
1372
+ ]
1373
+ },
1374
+ "metadata": {},
1375
+ "output_type": "display_data"
1376
+ },
1377
+ {
1378
+ "data": {
1379
+ "application/vnd.jupyter.widget-view+json": {
1380
+ "model_id": "a53c6c7c1f5942bfa064f26bc81b0721",
1381
+ "version_major": 2,
1382
+ "version_minor": 0
1383
+ },
1384
+ "text/plain": [
1385
+ "Creating parquet from Arrow format: 0%| | 0/1120 [00:00<?, ?ba/s]"
1386
+ ]
1387
+ },
1388
+ "metadata": {},
1389
+ "output_type": "display_data"
1390
+ },
1391
+ {
1392
+ "data": {
1393
+ "application/vnd.jupyter.widget-view+json": {
1394
+ "model_id": "de80a629f798442f925b54b15c74a6c8",
1395
+ "version_major": 2,
1396
+ "version_minor": 0
1397
+ },
1398
+ "text/plain": [
1399
+ "Upload 1 LFS files: 0%| | 0/1 [00:00<?, ?it/s]"
1400
+ ]
1401
+ },
1402
+ "metadata": {},
1403
+ "output_type": "display_data"
1404
+ },
1405
+ {
1406
+ "data": {
1407
+ "application/vnd.jupyter.widget-view+json": {
1408
+ "model_id": "148324cc96804841bff0bc1ab8faaf8a",
1409
+ "version_major": 2,
1410
+ "version_minor": 0
1411
+ },
1412
+ "text/plain": [
1413
+ "Creating parquet from Arrow format: 0%| | 0/1120 [00:00<?, ?ba/s]"
1414
+ ]
1415
+ },
1416
+ "metadata": {},
1417
+ "output_type": "display_data"
1418
+ },
1419
+ {
1420
+ "data": {
1421
+ "application/vnd.jupyter.widget-view+json": {
1422
+ "model_id": "b1f067b850324ba6b01a31c81acc4213",
1423
+ "version_major": 2,
1424
+ "version_minor": 0
1425
+ },
1426
+ "text/plain": [
1427
+ "Upload 1 LFS files: 0%| | 0/1 [00:00<?, ?it/s]"
1428
+ ]
1429
+ },
1430
+ "metadata": {},
1431
+ "output_type": "display_data"
1432
+ },
1433
+ {
1434
+ "data": {
1435
+ "application/vnd.jupyter.widget-view+json": {
1436
+ "model_id": "f21ff3f50b98420e90550d7eab50a1ee",
1437
+ "version_major": 2,
1438
+ "version_minor": 0
1439
+ },
1440
+ "text/plain": [
1441
+ "Creating parquet from Arrow format: 0%| | 0/1120 [00:00<?, ?ba/s]"
1442
+ ]
1443
+ },
1444
+ "metadata": {},
1445
+ "output_type": "display_data"
1446
+ },
1447
+ {
1448
+ "data": {
1449
+ "application/vnd.jupyter.widget-view+json": {
1450
+ "model_id": "14e2a74e795043e39a3131d7394aa70a",
1451
+ "version_major": 2,
1452
+ "version_minor": 0
1453
+ },
1454
+ "text/plain": [
1455
+ "Upload 1 LFS files: 0%| | 0/1 [00:00<?, ?it/s]"
1456
+ ]
1457
+ },
1458
+ "metadata": {},
1459
+ "output_type": "display_data"
1460
+ }
1461
+ ],
1462
+ "source": [
1463
+ "dataset.push_to_hub(\"Finnish-NLP/Reddit_fi_2006_2022\", private=True)"
1464
+ ]
1465
+ },
1466
+ {
1467
+ "cell_type": "code",
1468
+ "execution_count": null,
1469
+ "metadata": {},
1470
+ "outputs": [],
1471
+ "source": []
1472
+ }
1473
+ ],
1474
+ "metadata": {
1475
+ "kernelspec": {
1476
+ "display_name": "Python 3.9.15 ('redditEnv')",
1477
+ "language": "python",
1478
+ "name": "python3"
1479
+ },
1480
+ "language_info": {
1481
+ "codemirror_mode": {
1482
+ "name": "ipython",
1483
+ "version": 3
1484
+ },
1485
+ "file_extension": ".py",
1486
+ "mimetype": "text/x-python",
1487
+ "name": "python",
1488
+ "nbconvert_exporter": "python",
1489
+ "pygments_lexer": "ipython3",
1490
+ "version": "3.9.15"
1491
+ },
1492
+ "orig_nbformat": 4,
1493
+ "vscode": {
1494
+ "interpreter": {
1495
+ "hash": "ef741df2a7755d2d639440173889a3c1405e2c4dc3663c5e25a76822c200d193"
1496
+ }
1497
+ }
1498
+ },
1499
+ "nbformat": 4,
1500
+ "nbformat_minor": 2
1501
+ }
process_initial_and_end_fi_fiiltering.ipynb ADDED
@@ -0,0 +1,1727 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "code",
5
+ "execution_count": 1,
6
+ "metadata": {},
7
+ "outputs": [
8
+ {
9
+ "name": "stderr",
10
+ "output_type": "stream",
11
+ "text": [
12
+ "Warning : `load_model` does not return WordVectorModel or SupervisedModel any more, but a `FastText` object which is very similar.\n"
13
+ ]
14
+ }
15
+ ],
16
+ "source": [
17
+ "import pandas as pd\n",
18
+ "import fasttext\n",
19
+ "import json\n",
20
+ "import polars as pl\n",
21
+ "\n",
22
+ "PRETRAINED_MODEL_PATH = 'langdetect_model/lid.176.bin'\n",
23
+ "model = fasttext.load_model(PRETRAINED_MODEL_PATH) "
24
+ ]
25
+ },
26
+ {
27
+ "cell_type": "code",
28
+ "execution_count": 2,
29
+ "metadata": {},
30
+ "outputs": [],
31
+ "source": [
32
+ "def load_file(path):\n",
33
+ " df = pl.DataFrame(columns = ['subreddit', 'body'])\n",
34
+ "\n",
35
+ " count = 0\n",
36
+ " with open(path, 'r', encoding='utf-8') as file:\n",
37
+ " data = file.readlines()\n",
38
+ " \n",
39
+ " data = [json.loads(message) for message in data]\n",
40
+ " df = pd.DataFrame(data)\n",
41
+ " data = None\n",
42
+ " df = df[['subreddit', 'body']]\n",
43
+ " df = pl.DataFrame(df)\n",
44
+ " print(f'amount of rows in read file: {len(df)}')\n",
45
+ " df = df.unique(subset=[\"body\"])\n",
46
+ " print(f'unique rows in read file: {len(df)}')\n",
47
+ " df = df.filter((pl.col(\"body\").str.lengths() > 30))\n",
48
+ " print(f'unique rows with len over 30: {len(df)}')\n",
49
+ " #df = df.filter(pl.col(\"body\").len() > 30)\n",
50
+ " return df"
51
+ ]
52
+ },
53
+ {
54
+ "cell_type": "code",
55
+ "execution_count": 3,
56
+ "metadata": {},
57
+ "outputs": [],
58
+ "source": [
59
+ "import re\n",
60
+ "\n",
61
+ "def pred_lang(row):\n",
62
+ " try:\n",
63
+ " pred = model.predict(str(re.sub('\\n', '', str(row[1]))))\n",
64
+ " row = row + (pred[0][0],)\n",
65
+ " row = row + (pred[1][0],)\n",
66
+ " except Exception as e:\n",
67
+ " row = row + ('could_not_predict',)\n",
68
+ " row = row + ('could_not_predict',)\n",
69
+ " return row\n",
70
+ "\n",
71
+ " "
72
+ ]
73
+ },
74
+ {
75
+ "cell_type": "code",
76
+ "execution_count": null,
77
+ "metadata": {},
78
+ "outputs": [],
79
+ "source": [
80
+ "# Process year by year\n",
81
+ "process_years = ['2011', '2012']\n",
82
+ "\n",
83
+ "for process_year in process_years:\n",
84
+ " filepaths = [os.getcwd() + os.sep + process_year + os.sep + filepath for filepath in os.listdir(os.getcwd() + os.sep + process_year) if filepath.endswith('.zst') == False]\n",
85
+ " print(f\"Starting year: {process_year}\")\n",
86
+ " for i, filepath in enumerate(filepaths):\n",
87
+ " print(f'{i+1}/{len(filepaths)}')\n",
88
+ " if i == 0:\n",
89
+ " print(f'loading file: {filepaths[i]}')\n",
90
+ " df = load_file(filepaths[i])\n",
91
+ " df = df.apply(lambda row: pred_lang(row))\n",
92
+ " print(f'amount of rows in read file after filtering: {len(df)}')\n",
93
+ " df = df.rename({\"column_0\": \"subreddit\", \"column_1\": 'body', \"column_2\": 'label', \"column_3\": 'proba'})\n",
94
+ " df = df.filter(pl.col(\"label\").str.contains('fi'))\n",
95
+ " df = df.filter(pl.col(\"proba\") > 0.5)\n",
96
+ " else:\n",
97
+ " print(\"in else\")\n",
98
+ " new_df = load_file(filepaths[i])\n",
99
+ " new_df = new_df.apply(pred_lang)\n",
100
+ " new_df = new_df.rename({\"column_0\": \"subreddit\", \"column_1\": 'body', \"column_2\": 'label', \"column_3\": 'proba'})\n",
101
+ " new_df = new_df.filter(pl.col(\"label\").str.contains('fi'))\n",
102
+ " new_df = new_df.filter(pl.col(\"proba\") > 0.5)\n",
103
+ " print(f\"amount of new rows in file to add: {len(new_df)}\")\n",
104
+ " df.extend(new_df)\n",
105
+ " print(len(df))\n",
106
+ " print('\\n')\n",
107
+ " df.write_csv(f'processed{os.sep}{process_year}_data.csv')\n",
108
+ " print('\\n')\n",
109
+ " print('\\n')\n"
110
+ ]
111
+ },
112
+ {
113
+ "cell_type": "code",
114
+ "execution_count": null,
115
+ "metadata": {},
116
+ "outputs": [],
117
+ "source": [
118
+ "# Process file by file\n",
119
+ "process_years = ['2012']\n",
120
+ "\n",
121
+ "\n",
122
+ "for process_year in process_years:\n",
123
+ " filepaths = [os.getcwd() + os.sep + process_year + os.sep + filepath for filepath in os.listdir(os.getcwd() + os.sep + process_year) if filepath.endswith('.zst') == False]\n",
124
+ " filepaths = filepaths[6::]\n",
125
+ " print(f\"Starting year: {process_year}\")\n",
126
+ " for i, filepath in enumerate(filepaths):\n",
127
+ " print(f'{i+1}/{len(filepaths)}')\n",
128
+ " print(f'loading file: {filepaths[i]}')\n",
129
+ " df = load_file(filepaths[i])\n",
130
+ " df = df.apply(lambda row: pred_lang(row))\n",
131
+ " print(f'amount of rows in read file after filtering: {len(df)}')\n",
132
+ " df = df.rename({\"column_0\": \"subreddit\", \"column_1\": 'body', \"column_2\": 'label', \"column_3\": 'proba'})\n",
133
+ " df = df.filter(pl.col(\"label\").str.contains('fi'))\n",
134
+ " df = df.filter(pl.col(\"proba\") > 0.5)\n",
135
+ " df.write_csv(f'processed{os.sep}{process_year}_{i+1}_data.csv')\n",
136
+ " print('\\n')\n",
137
+ " print('\\n')\n"
138
+ ]
139
+ },
140
+ {
141
+ "cell_type": "code",
142
+ "execution_count": 25,
143
+ "metadata": {},
144
+ "outputs": [
145
+ {
146
+ "name": "stdout",
147
+ "output_type": "stream",
148
+ "text": [
149
+ "['i:\\\\NLP_Datasets\\\\Reddit\\\\2022\\\\RC_2022-01.zst']\n",
150
+ "Starting year: 2022\n",
151
+ "1/1\n"
152
+ ]
153
+ },
154
+ {
155
+ "ename": "UnicodeDecodeError",
156
+ "evalue": "'charmap' codec can't decode byte 0x8d in position 7292: character maps to <undefined>",
157
+ "output_type": "error",
158
+ "traceback": [
159
+ "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m",
160
+ "\u001b[1;31mUnicodeDecodeError\u001b[0m Traceback (most recent call last)",
161
+ "Cell \u001b[1;32mIn[25], line 45\u001b[0m\n\u001b[0;32m 43\u001b[0m records \u001b[39m=\u001b[39m \u001b[39mmap\u001b[39m(json\u001b[39m.\u001b[39mloads, read_lines_from_zst_file(file))\n\u001b[0;32m 44\u001b[0m datas \u001b[39m=\u001b[39m []\n\u001b[1;32m---> 45\u001b[0m \u001b[39mfor\u001b[39;00m record \u001b[39min\u001b[39;00m records:\n\u001b[0;32m 46\u001b[0m \u001b[39mif\u001b[39;00m \u001b[39mlen\u001b[39m(record\u001b[39m.\u001b[39mget(\u001b[39m'\u001b[39m\u001b[39mbody\u001b[39m\u001b[39m'\u001b[39m)) \u001b[39m>\u001b[39m \u001b[39m30\u001b[39m:\n\u001b[0;32m 47\u001b[0m datas\u001b[39m.\u001b[39mappend((\u001b[39mstr\u001b[39m(record\u001b[39m.\u001b[39mget(\u001b[39m'\u001b[39m\u001b[39msubreddit\u001b[39m\u001b[39m'\u001b[39m)), \u001b[39mstr\u001b[39m(record\u001b[39m.\u001b[39mget(\u001b[39m'\u001b[39m\u001b[39mcreated_utc\u001b[39m\u001b[39m'\u001b[39m)),\u001b[39mstr\u001b[39m(record\u001b[39m.\u001b[39mget(\u001b[39m'\u001b[39m\u001b[39mscore\u001b[39m\u001b[39m'\u001b[39m)),\u001b[39mstr\u001b[39m(record\u001b[39m.\u001b[39mget(\u001b[39m'\u001b[39m\u001b[39mbody\u001b[39m\u001b[39m'\u001b[39m))))\n",
162
+ "Cell \u001b[1;32mIn[25], line 19\u001b[0m, in \u001b[0;36mread_lines_from_zst_file\u001b[1;34m(zstd_file_path)\u001b[0m\n\u001b[0;32m 14\u001b[0m \u001b[39mdef\u001b[39;00m \u001b[39mread_lines_from_zst_file\u001b[39m(zstd_file_path:Path):\n\u001b[0;32m 15\u001b[0m \u001b[39mwith\u001b[39;00m (\n\u001b[0;32m 16\u001b[0m zstd\u001b[39m.\u001b[39mopen(zstd_file_path, mode\u001b[39m=\u001b[39m\u001b[39m'\u001b[39m\u001b[39mrb\u001b[39m\u001b[39m'\u001b[39m, dctx\u001b[39m=\u001b[39mDCTX, encoding\u001b[39m=\u001b[39m\u001b[39m'\u001b[39m\u001b[39mutf-8\u001b[39m\u001b[39m'\u001b[39m, errors\u001b[39m=\u001b[39m\u001b[39m'\u001b[39m\u001b[39mignore\u001b[39m\u001b[39m'\u001b[39m) \u001b[39mas\u001b[39;00m zfh,\n\u001b[0;32m 17\u001b[0m io\u001b[39m.\u001b[39mTextIOWrapper(zfh) \u001b[39mas\u001b[39;00m iofh\n\u001b[0;32m 18\u001b[0m ):\n\u001b[1;32m---> 19\u001b[0m \u001b[39mfor\u001b[39;00m line \u001b[39min\u001b[39;00m iofh:\n\u001b[0;32m 20\u001b[0m \u001b[39mtry\u001b[39;00m:\n\u001b[0;32m 21\u001b[0m \u001b[39myield\u001b[39;00m line\n",
163
+ "File \u001b[1;32mf:\\tools\\Anaconda3\\envs\\redditEnv\\lib\\encodings\\cp1252.py:23\u001b[0m, in \u001b[0;36mIncrementalDecoder.decode\u001b[1;34m(self, input, final)\u001b[0m\n\u001b[0;32m 22\u001b[0m \u001b[39mdef\u001b[39;00m \u001b[39mdecode\u001b[39m(\u001b[39mself\u001b[39m, \u001b[39minput\u001b[39m, final\u001b[39m=\u001b[39m\u001b[39mFalse\u001b[39;00m):\n\u001b[1;32m---> 23\u001b[0m \u001b[39mreturn\u001b[39;00m codecs\u001b[39m.\u001b[39;49mcharmap_decode(\u001b[39minput\u001b[39;49m,\u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49merrors,decoding_table)[\u001b[39m0\u001b[39m]\n",
164
+ "\u001b[1;31mUnicodeDecodeError\u001b[0m: 'charmap' codec can't decode byte 0x8d in position 7292: character maps to <undefined>"
165
+ ]
166
+ }
167
+ ],
168
+ "source": [
169
+ "# In use 14 GB, 1min 46.5s\n",
170
+ "import pandas as pd\n",
171
+ "import io\n",
172
+ "import zstandard as zstd\n",
173
+ "from pathlib import Path\n",
174
+ "import json\n",
175
+ "import os\n",
176
+ "import sys\n",
177
+ "\n",
178
+ "virhe_count = 0\n",
179
+ "\n",
180
+ "DCTX = zstd.ZstdDecompressor(max_window_size=2**31)\n",
181
+ "\n",
182
+ "def read_lines_from_zst_file(zstd_file_path:Path):\n",
183
+ " with (\n",
184
+ " zstd.open(zstd_file_path, mode='rb', dctx=DCTX, encoding='utf-8', errors='ignore') as zfh,\n",
185
+ " io.TextIOWrapper(zfh) as iofh\n",
186
+ " ):\n",
187
+ " for line in iofh:\n",
188
+ " try:\n",
189
+ " yield line\n",
190
+ " except Exception as e:\n",
191
+ " virhe_count +=1\n",
192
+ " if virhe_count % 1000 == 0:\n",
193
+ " print(f'virhe_count: {virhe_count}')\n",
194
+ " pass\n",
195
+ "\n",
196
+ "\n",
197
+ "\n",
198
+ "process_years = ['2022']\n",
199
+ "file_counter = 1\n",
200
+ "\n",
201
+ "for process_year in process_years:\n",
202
+ " filepaths = [os.getcwd() + os.sep + process_year + os.sep + filepath for filepath in os.listdir(os.getcwd() + os.sep + process_year) if filepath.endswith('.zst')]\n",
203
+ " filepaths = filepaths[0:1]\n",
204
+ " print(filepaths)\n",
205
+ " \n",
206
+ " print(f\"Starting year: {process_year}\")\n",
207
+ " for i, filepath in enumerate(filepaths):\n",
208
+ " file_counter = 1\n",
209
+ " print(f'{i+1}/{len(filepaths)}')\n",
210
+ " file = Path(filepath)\n",
211
+ " records = map(json.loads, read_lines_from_zst_file(file))\n",
212
+ " datas = []\n",
213
+ " for record in records:\n",
214
+ " if len(record.get('body')) > 30:\n",
215
+ " datas.append((str(record.get('subreddit')), str(record.get('created_utc')),str(record.get('score')),str(record.get('body'))))\n",
216
+ " if len(datas) % 1000000 == 0:\n",
217
+ " print(len(datas))\n",
218
+ " #print(f'{sys.getsizeof(datas) / (1024 * 1024)} MegaBytes')\n",
219
+ " if len(datas) > 10000000:\n",
220
+ " df = pd.DataFrame(datas)\n",
221
+ " df = df.rename(columns={0:'subreddit', 1:'created_utc', 2:'score', 3:'body'})\n",
222
+ " df.to_parquet(f'{str(process_year) + os.sep}{filepath.split(os.sep)[-1].replace(\".zst\",\"\")}_{file_counter}.parquet')\n",
223
+ " file_counter +=1\n",
224
+ " datas = []\n",
225
+ " \n",
226
+ " df = pd.DataFrame(datas)\n",
227
+ " df = df.rename(columns={0:'subreddit', 1:'created_utc', 2:'score', 3:'body'})\n",
228
+ " df.to_parquet(f'{str(process_year) + os.sep}{filepath.split(os.sep)[-1].replace(\".zst\",\"\")}_{file_counter}.parquet') \n",
229
+ " \n",
230
+ "\n",
231
+ "\n",
232
+ "\n"
233
+ ]
234
+ },
235
+ {
236
+ "cell_type": "code",
237
+ "execution_count": 4,
238
+ "metadata": {},
239
+ "outputs": [],
240
+ "source": [
241
+ "import re\n",
242
+ "\n",
243
+ "def pred_lang(row):\n",
244
+ " try:\n",
245
+ " pred = model.predict(str(re.sub('\\n', '', str(row[3]))))\n",
246
+ " row = row + (pred[0][0],)\n",
247
+ " row = row + (pred[1][0],)\n",
248
+ " except Exception as e:\n",
249
+ " row = row + ('could_not_predict','could_not_predict')\n",
250
+ " return row\n",
251
+ "\n",
252
+ "def pred_lang_pd(row):\n",
253
+ " try:\n",
254
+ " pred = model.predict(str(re.sub('\\n', '', str(row['body']))))\n",
255
+ " row['predicted_language'] = pred[0][0]\n",
256
+ " row['proba'] = pred[1][0]\n",
257
+ " except Exception as e:\n",
258
+ " row['predicted_language'] = 'could_not_predict'\n",
259
+ " row['proba'] = 'could_not_predict'\n",
260
+ " return row\n",
261
+ "\n"
262
+ ]
263
+ },
264
+ {
265
+ "cell_type": "code",
266
+ "execution_count": 8,
267
+ "metadata": {},
268
+ "outputs": [
269
+ {
270
+ "name": "stdout",
271
+ "output_type": "stream",
272
+ "text": [
273
+ "1/200\n",
274
+ "loading file: i:\\NLP_Datasets\\Reddit\\2022\\RC_2022-01_1.parquet\n",
275
+ "original len of read file: 10000001\n",
276
+ "\n",
277
+ "\n",
278
+ "\n",
279
+ "\n",
280
+ "2/200\n",
281
+ "loading file: i:\\NLP_Datasets\\Reddit\\2022\\RC_2022-01_10.parquet\n",
282
+ "original len of read file: 10000001\n",
283
+ "\n",
284
+ "\n",
285
+ "\n",
286
+ "\n",
287
+ "3/200\n",
288
+ "loading file: i:\\NLP_Datasets\\Reddit\\2022\\RC_2022-01_11.parquet\n",
289
+ "original len of read file: 10000001\n",
290
+ "\n",
291
+ "\n",
292
+ "\n",
293
+ "\n",
294
+ "4/200\n",
295
+ "loading file: i:\\NLP_Datasets\\Reddit\\2022\\RC_2022-01_12.parquet\n",
296
+ "original len of read file: 10000001\n",
297
+ "\n",
298
+ "\n",
299
+ "\n",
300
+ "\n",
301
+ "5/200\n",
302
+ "loading file: i:\\NLP_Datasets\\Reddit\\2022\\RC_2022-01_13.parquet\n",
303
+ "original len of read file: 10000001\n",
304
+ "\n",
305
+ "\n",
306
+ "\n",
307
+ "\n",
308
+ "6/200\n",
309
+ "loading file: i:\\NLP_Datasets\\Reddit\\2022\\RC_2022-01_14.parquet\n",
310
+ "original len of read file: 10000001\n",
311
+ "\n",
312
+ "\n",
313
+ "\n",
314
+ "\n",
315
+ "7/200\n",
316
+ "loading file: i:\\NLP_Datasets\\Reddit\\2022\\RC_2022-01_15.parquet\n",
317
+ "original len of read file: 10000001\n",
318
+ "\n",
319
+ "\n",
320
+ "\n",
321
+ "\n",
322
+ "8/200\n",
323
+ "loading file: i:\\NLP_Datasets\\Reddit\\2022\\RC_2022-01_16.parquet\n",
324
+ "original len of read file: 10000001\n",
325
+ "\n",
326
+ "\n",
327
+ "\n",
328
+ "\n",
329
+ "9/200\n",
330
+ "loading file: i:\\NLP_Datasets\\Reddit\\2022\\RC_2022-01_17.parquet\n",
331
+ "original len of read file: 10000001\n",
332
+ "\n",
333
+ "\n",
334
+ "\n",
335
+ "\n",
336
+ "10/200\n",
337
+ "loading file: i:\\NLP_Datasets\\Reddit\\2022\\RC_2022-01_18.parquet\n",
338
+ "original len of read file: 3600265\n",
339
+ "\n",
340
+ "\n",
341
+ "\n",
342
+ "\n",
343
+ "11/200\n",
344
+ "loading file: i:\\NLP_Datasets\\Reddit\\2022\\RC_2022-01_2.parquet\n",
345
+ "original len of read file: 10000001\n",
346
+ "\n",
347
+ "\n",
348
+ "\n",
349
+ "\n",
350
+ "12/200\n",
351
+ "loading file: i:\\NLP_Datasets\\Reddit\\2022\\RC_2022-01_3.parquet\n",
352
+ "original len of read file: 10000001\n",
353
+ "\n",
354
+ "\n",
355
+ "\n",
356
+ "\n",
357
+ "13/200\n",
358
+ "loading file: i:\\NLP_Datasets\\Reddit\\2022\\RC_2022-01_4.parquet\n",
359
+ "original len of read file: 10000001\n",
360
+ "\n",
361
+ "\n",
362
+ "\n",
363
+ "\n",
364
+ "14/200\n",
365
+ "loading file: i:\\NLP_Datasets\\Reddit\\2022\\RC_2022-01_5.parquet\n",
366
+ "original len of read file: 10000001\n",
367
+ "\n",
368
+ "\n",
369
+ "\n",
370
+ "\n",
371
+ "15/200\n",
372
+ "loading file: i:\\NLP_Datasets\\Reddit\\2022\\RC_2022-01_6.parquet\n",
373
+ "original len of read file: 10000001\n",
374
+ "\n",
375
+ "\n",
376
+ "\n",
377
+ "\n",
378
+ "16/200\n",
379
+ "loading file: i:\\NLP_Datasets\\Reddit\\2022\\RC_2022-01_7.parquet\n",
380
+ "original len of read file: 10000001\n",
381
+ "\n",
382
+ "\n",
383
+ "\n",
384
+ "\n",
385
+ "17/200\n",
386
+ "loading file: i:\\NLP_Datasets\\Reddit\\2022\\RC_2022-01_8.parquet\n",
387
+ "original len of read file: 10000001\n",
388
+ "\n",
389
+ "\n",
390
+ "\n",
391
+ "\n",
392
+ "18/200\n",
393
+ "loading file: i:\\NLP_Datasets\\Reddit\\2022\\RC_2022-01_9.parquet\n",
394
+ "original len of read file: 10000001\n",
395
+ "\n",
396
+ "\n",
397
+ "\n",
398
+ "\n",
399
+ "19/200\n",
400
+ "loading file: i:\\NLP_Datasets\\Reddit\\2022\\RC_2022-02_1.parquet\n",
401
+ "original len of read file: 10000001\n",
402
+ "\n",
403
+ "\n",
404
+ "\n",
405
+ "\n",
406
+ "20/200\n",
407
+ "loading file: i:\\NLP_Datasets\\Reddit\\2022\\RC_2022-02_10.parquet\n",
408
+ "original len of read file: 10000001\n",
409
+ "\n",
410
+ "\n",
411
+ "\n",
412
+ "\n",
413
+ "21/200\n",
414
+ "loading file: i:\\NLP_Datasets\\Reddit\\2022\\RC_2022-02_11.parquet\n",
415
+ "original len of read file: 10000001\n",
416
+ "\n",
417
+ "\n",
418
+ "\n",
419
+ "\n",
420
+ "22/200\n",
421
+ "loading file: i:\\NLP_Datasets\\Reddit\\2022\\RC_2022-02_12.parquet\n",
422
+ "original len of read file: 10000001\n",
423
+ "\n",
424
+ "\n",
425
+ "\n",
426
+ "\n",
427
+ "23/200\n",
428
+ "loading file: i:\\NLP_Datasets\\Reddit\\2022\\RC_2022-02_13.parquet\n",
429
+ "original len of read file: 10000001\n",
430
+ "\n",
431
+ "\n",
432
+ "\n",
433
+ "\n",
434
+ "24/200\n",
435
+ "loading file: i:\\NLP_Datasets\\Reddit\\2022\\RC_2022-02_14.parquet\n",
436
+ "original len of read file: 10000001\n",
437
+ "\n",
438
+ "\n",
439
+ "\n",
440
+ "\n",
441
+ "25/200\n",
442
+ "loading file: i:\\NLP_Datasets\\Reddit\\2022\\RC_2022-02_15.parquet\n",
443
+ "original len of read file: 8082107\n",
444
+ "\n",
445
+ "\n",
446
+ "\n",
447
+ "\n",
448
+ "26/200\n",
449
+ "loading file: i:\\NLP_Datasets\\Reddit\\2022\\RC_2022-02_2.parquet\n",
450
+ "original len of read file: 10000001\n",
451
+ "\n",
452
+ "\n",
453
+ "\n",
454
+ "\n",
455
+ "27/200\n",
456
+ "loading file: i:\\NLP_Datasets\\Reddit\\2022\\RC_2022-02_3.parquet\n",
457
+ "original len of read file: 10000001\n",
458
+ "\n",
459
+ "\n",
460
+ "\n",
461
+ "\n",
462
+ "28/200\n",
463
+ "loading file: i:\\NLP_Datasets\\Reddit\\2022\\RC_2022-02_4.parquet\n",
464
+ "original len of read file: 10000001\n",
465
+ "\n",
466
+ "\n",
467
+ "\n",
468
+ "\n",
469
+ "29/200\n",
470
+ "loading file: i:\\NLP_Datasets\\Reddit\\2022\\RC_2022-02_5.parquet\n",
471
+ "original len of read file: 10000001\n",
472
+ "\n",
473
+ "\n",
474
+ "\n",
475
+ "\n",
476
+ "30/200\n",
477
+ "loading file: i:\\NLP_Datasets\\Reddit\\2022\\RC_2022-02_6.parquet\n",
478
+ "original len of read file: 10000001\n",
479
+ "\n",
480
+ "\n",
481
+ "\n",
482
+ "\n",
483
+ "31/200\n",
484
+ "loading file: i:\\NLP_Datasets\\Reddit\\2022\\RC_2022-02_7.parquet\n",
485
+ "original len of read file: 10000001\n",
486
+ "\n",
487
+ "\n",
488
+ "\n",
489
+ "\n",
490
+ "32/200\n",
491
+ "loading file: i:\\NLP_Datasets\\Reddit\\2022\\RC_2022-02_8.parquet\n",
492
+ "original len of read file: 10000001\n",
493
+ "\n",
494
+ "\n",
495
+ "\n",
496
+ "\n",
497
+ "33/200\n",
498
+ "loading file: i:\\NLP_Datasets\\Reddit\\2022\\RC_2022-02_9.parquet\n",
499
+ "original len of read file: 10000001\n",
500
+ "\n",
501
+ "\n",
502
+ "\n",
503
+ "\n",
504
+ "34/200\n",
505
+ "loading file: i:\\NLP_Datasets\\Reddit\\2022\\RC_2022-03_1.parquet\n",
506
+ "original len of read file: 10000001\n",
507
+ "\n",
508
+ "\n",
509
+ "\n",
510
+ "\n",
511
+ "35/200\n",
512
+ "loading file: i:\\NLP_Datasets\\Reddit\\2022\\RC_2022-03_10.parquet\n",
513
+ "original len of read file: 10000001\n",
514
+ "\n",
515
+ "\n",
516
+ "\n",
517
+ "\n",
518
+ "36/200\n",
519
+ "loading file: i:\\NLP_Datasets\\Reddit\\2022\\RC_2022-03_11.parquet\n",
520
+ "original len of read file: 10000001\n",
521
+ "\n",
522
+ "\n",
523
+ "\n",
524
+ "\n",
525
+ "37/200\n",
526
+ "loading file: i:\\NLP_Datasets\\Reddit\\2022\\RC_2022-03_12.parquet\n",
527
+ "original len of read file: 10000001\n",
528
+ "\n",
529
+ "\n",
530
+ "\n",
531
+ "\n",
532
+ "38/200\n",
533
+ "loading file: i:\\NLP_Datasets\\Reddit\\2022\\RC_2022-03_13.parquet\n",
534
+ "original len of read file: 10000001\n",
535
+ "\n",
536
+ "\n",
537
+ "\n",
538
+ "\n",
539
+ "39/200\n",
540
+ "loading file: i:\\NLP_Datasets\\Reddit\\2022\\RC_2022-03_14.parquet\n",
541
+ "original len of read file: 10000001\n",
542
+ "\n",
543
+ "\n",
544
+ "\n",
545
+ "\n",
546
+ "40/200\n",
547
+ "loading file: i:\\NLP_Datasets\\Reddit\\2022\\RC_2022-03_15.parquet\n",
548
+ "original len of read file: 10000001\n",
549
+ "\n",
550
+ "\n",
551
+ "\n",
552
+ "\n",
553
+ "41/200\n",
554
+ "loading file: i:\\NLP_Datasets\\Reddit\\2022\\RC_2022-03_16.parquet\n",
555
+ "original len of read file: 10000001\n",
556
+ "\n",
557
+ "\n",
558
+ "\n",
559
+ "\n",
560
+ "42/200\n",
561
+ "loading file: i:\\NLP_Datasets\\Reddit\\2022\\RC_2022-03_17.parquet\n",
562
+ "original len of read file: 2166114\n",
563
+ "\n",
564
+ "\n",
565
+ "\n",
566
+ "\n",
567
+ "43/200\n",
568
+ "loading file: i:\\NLP_Datasets\\Reddit\\2022\\RC_2022-03_2.parquet\n",
569
+ "original len of read file: 10000001\n",
570
+ "\n",
571
+ "\n",
572
+ "\n",
573
+ "\n",
574
+ "44/200\n",
575
+ "loading file: i:\\NLP_Datasets\\Reddit\\2022\\RC_2022-03_3.parquet\n",
576
+ "original len of read file: 10000001\n",
577
+ "\n",
578
+ "\n",
579
+ "\n",
580
+ "\n",
581
+ "45/200\n",
582
+ "loading file: i:\\NLP_Datasets\\Reddit\\2022\\RC_2022-03_4.parquet\n",
583
+ "original len of read file: 10000001\n",
584
+ "\n",
585
+ "\n",
586
+ "\n",
587
+ "\n",
588
+ "46/200\n",
589
+ "loading file: i:\\NLP_Datasets\\Reddit\\2022\\RC_2022-03_5.parquet\n",
590
+ "original len of read file: 10000001\n",
591
+ "\n",
592
+ "\n",
593
+ "\n",
594
+ "\n",
595
+ "47/200\n",
596
+ "loading file: i:\\NLP_Datasets\\Reddit\\2022\\RC_2022-03_6.parquet\n",
597
+ "original len of read file: 10000001\n",
598
+ "\n",
599
+ "\n",
600
+ "\n",
601
+ "\n",
602
+ "48/200\n",
603
+ "loading file: i:\\NLP_Datasets\\Reddit\\2022\\RC_2022-03_7.parquet\n",
604
+ "original len of read file: 10000001\n",
605
+ "\n",
606
+ "\n",
607
+ "\n",
608
+ "\n",
609
+ "49/200\n",
610
+ "loading file: i:\\NLP_Datasets\\Reddit\\2022\\RC_2022-03_8.parquet\n",
611
+ "original len of read file: 10000001\n",
612
+ "\n",
613
+ "\n",
614
+ "\n",
615
+ "\n",
616
+ "50/200\n",
617
+ "loading file: i:\\NLP_Datasets\\Reddit\\2022\\RC_2022-03_9.parquet\n",
618
+ "original len of read file: 10000001\n",
619
+ "\n",
620
+ "\n",
621
+ "\n",
622
+ "\n",
623
+ "51/200\n",
624
+ "loading file: i:\\NLP_Datasets\\Reddit\\2022\\RC_2022-04_1.parquet\n",
625
+ "original len of read file: 10000001\n",
626
+ "\n",
627
+ "\n",
628
+ "\n",
629
+ "\n",
630
+ "52/200\n",
631
+ "loading file: i:\\NLP_Datasets\\Reddit\\2022\\RC_2022-04_10.parquet\n",
632
+ "original len of read file: 10000001\n",
633
+ "\n",
634
+ "\n",
635
+ "\n",
636
+ "\n",
637
+ "53/200\n",
638
+ "loading file: i:\\NLP_Datasets\\Reddit\\2022\\RC_2022-04_11.parquet\n",
639
+ "original len of read file: 10000001\n",
640
+ "\n",
641
+ "\n",
642
+ "\n",
643
+ "\n",
644
+ "54/200\n",
645
+ "loading file: i:\\NLP_Datasets\\Reddit\\2022\\RC_2022-04_12.parquet\n",
646
+ "original len of read file: 10000001\n",
647
+ "\n",
648
+ "\n",
649
+ "\n",
650
+ "\n",
651
+ "55/200\n",
652
+ "loading file: i:\\NLP_Datasets\\Reddit\\2022\\RC_2022-04_13.parquet\n",
653
+ "original len of read file: 10000001\n",
654
+ "\n",
655
+ "\n",
656
+ "\n",
657
+ "\n",
658
+ "56/200\n",
659
+ "loading file: i:\\NLP_Datasets\\Reddit\\2022\\RC_2022-04_14.parquet\n",
660
+ "original len of read file: 10000001\n",
661
+ "\n",
662
+ "\n",
663
+ "\n",
664
+ "\n",
665
+ "57/200\n",
666
+ "loading file: i:\\NLP_Datasets\\Reddit\\2022\\RC_2022-04_15.parquet\n",
667
+ "original len of read file: 10000001\n",
668
+ "\n",
669
+ "\n",
670
+ "\n",
671
+ "\n",
672
+ "58/200\n",
673
+ "loading file: i:\\NLP_Datasets\\Reddit\\2022\\RC_2022-04_16.parquet\n",
674
+ "original len of read file: 7580212\n",
675
+ "\n",
676
+ "\n",
677
+ "\n",
678
+ "\n",
679
+ "59/200\n",
680
+ "loading file: i:\\NLP_Datasets\\Reddit\\2022\\RC_2022-04_2.parquet\n",
681
+ "original len of read file: 10000001\n",
682
+ "\n",
683
+ "\n",
684
+ "\n",
685
+ "\n",
686
+ "60/200\n",
687
+ "loading file: i:\\NLP_Datasets\\Reddit\\2022\\RC_2022-04_3.parquet\n",
688
+ "original len of read file: 10000001\n",
689
+ "\n",
690
+ "\n",
691
+ "\n",
692
+ "\n",
693
+ "61/200\n",
694
+ "loading file: i:\\NLP_Datasets\\Reddit\\2022\\RC_2022-04_4.parquet\n",
695
+ "original len of read file: 10000001\n",
696
+ "\n",
697
+ "\n",
698
+ "\n",
699
+ "\n",
700
+ "62/200\n",
701
+ "loading file: i:\\NLP_Datasets\\Reddit\\2022\\RC_2022-04_5.parquet\n",
702
+ "original len of read file: 10000001\n",
703
+ "\n",
704
+ "\n",
705
+ "\n",
706
+ "\n",
707
+ "63/200\n",
708
+ "loading file: i:\\NLP_Datasets\\Reddit\\2022\\RC_2022-04_6.parquet\n",
709
+ "original len of read file: 10000001\n",
710
+ "\n",
711
+ "\n",
712
+ "\n",
713
+ "\n",
714
+ "64/200\n",
715
+ "loading file: i:\\NLP_Datasets\\Reddit\\2022\\RC_2022-04_7.parquet\n",
716
+ "original len of read file: 10000001\n",
717
+ "\n",
718
+ "\n",
719
+ "\n",
720
+ "\n",
721
+ "65/200\n",
722
+ "loading file: i:\\NLP_Datasets\\Reddit\\2022\\RC_2022-04_8.parquet\n",
723
+ "original len of read file: 10000001\n",
724
+ "\n",
725
+ "\n",
726
+ "\n",
727
+ "\n",
728
+ "66/200\n",
729
+ "loading file: i:\\NLP_Datasets\\Reddit\\2022\\RC_2022-04_9.parquet\n",
730
+ "original len of read file: 10000001\n",
731
+ "\n",
732
+ "\n",
733
+ "\n",
734
+ "\n",
735
+ "67/200\n",
736
+ "loading file: i:\\NLP_Datasets\\Reddit\\2022\\RC_2022-05_1.parquet\n",
737
+ "original len of read file: 10000001\n",
738
+ "\n",
739
+ "\n",
740
+ "\n",
741
+ "\n",
742
+ "68/200\n",
743
+ "loading file: i:\\NLP_Datasets\\Reddit\\2022\\RC_2022-05_10.parquet\n",
744
+ "original len of read file: 10000001\n",
745
+ "\n",
746
+ "\n",
747
+ "\n",
748
+ "\n",
749
+ "69/200\n",
750
+ "loading file: i:\\NLP_Datasets\\Reddit\\2022\\RC_2022-05_11.parquet\n",
751
+ "original len of read file: 10000001\n",
752
+ "\n",
753
+ "\n",
754
+ "\n",
755
+ "\n",
756
+ "70/200\n",
757
+ "loading file: i:\\NLP_Datasets\\Reddit\\2022\\RC_2022-05_12.parquet\n",
758
+ "original len of read file: 10000001\n",
759
+ "\n",
760
+ "\n",
761
+ "\n",
762
+ "\n",
763
+ "71/200\n",
764
+ "loading file: i:\\NLP_Datasets\\Reddit\\2022\\RC_2022-05_13.parquet\n",
765
+ "original len of read file: 10000001\n",
766
+ "\n",
767
+ "\n",
768
+ "\n",
769
+ "\n",
770
+ "72/200\n",
771
+ "loading file: i:\\NLP_Datasets\\Reddit\\2022\\RC_2022-05_14.parquet\n",
772
+ "original len of read file: 10000001\n",
773
+ "\n",
774
+ "\n",
775
+ "\n",
776
+ "\n",
777
+ "73/200\n",
778
+ "loading file: i:\\NLP_Datasets\\Reddit\\2022\\RC_2022-05_15.parquet\n",
779
+ "original len of read file: 10000001\n",
780
+ "\n",
781
+ "\n",
782
+ "\n",
783
+ "\n",
784
+ "74/200\n",
785
+ "loading file: i:\\NLP_Datasets\\Reddit\\2022\\RC_2022-05_16.parquet\n",
786
+ "original len of read file: 9677905\n",
787
+ "\n",
788
+ "\n",
789
+ "\n",
790
+ "\n",
791
+ "75/200\n",
792
+ "loading file: i:\\NLP_Datasets\\Reddit\\2022\\RC_2022-05_2.parquet\n",
793
+ "original len of read file: 10000001\n",
794
+ "\n",
795
+ "\n",
796
+ "\n",
797
+ "\n",
798
+ "76/200\n",
799
+ "loading file: i:\\NLP_Datasets\\Reddit\\2022\\RC_2022-05_3.parquet\n",
800
+ "original len of read file: 10000001\n",
801
+ "\n",
802
+ "\n",
803
+ "\n",
804
+ "\n",
805
+ "77/200\n",
806
+ "loading file: i:\\NLP_Datasets\\Reddit\\2022\\RC_2022-05_4.parquet\n",
807
+ "original len of read file: 10000001\n",
808
+ "\n",
809
+ "\n",
810
+ "\n",
811
+ "\n",
812
+ "78/200\n",
813
+ "loading file: i:\\NLP_Datasets\\Reddit\\2022\\RC_2022-05_5.parquet\n",
814
+ "original len of read file: 10000001\n",
815
+ "\n",
816
+ "\n",
817
+ "\n",
818
+ "\n",
819
+ "79/200\n",
820
+ "loading file: i:\\NLP_Datasets\\Reddit\\2022\\RC_2022-05_6.parquet\n",
821
+ "original len of read file: 10000001\n",
822
+ "\n",
823
+ "\n",
824
+ "\n",
825
+ "\n",
826
+ "80/200\n",
827
+ "loading file: i:\\NLP_Datasets\\Reddit\\2022\\RC_2022-05_7.parquet\n",
828
+ "original len of read file: 10000001\n",
829
+ "\n",
830
+ "\n",
831
+ "\n",
832
+ "\n",
833
+ "81/200\n",
834
+ "loading file: i:\\NLP_Datasets\\Reddit\\2022\\RC_2022-05_8.parquet\n",
835
+ "original len of read file: 10000001\n",
836
+ "\n",
837
+ "\n",
838
+ "\n",
839
+ "\n",
840
+ "82/200\n",
841
+ "loading file: i:\\NLP_Datasets\\Reddit\\2022\\RC_2022-05_9.parquet\n",
842
+ "original len of read file: 10000001\n",
843
+ "\n",
844
+ "\n",
845
+ "\n",
846
+ "\n",
847
+ "83/200\n",
848
+ "loading file: i:\\NLP_Datasets\\Reddit\\2022\\RC_2022-06_1.parquet\n",
849
+ "original len of read file: 10000001\n",
850
+ "\n",
851
+ "\n",
852
+ "\n",
853
+ "\n",
854
+ "84/200\n",
855
+ "loading file: i:\\NLP_Datasets\\Reddit\\2022\\RC_2022-06_10.parquet\n",
856
+ "original len of read file: 10000001\n",
857
+ "\n",
858
+ "\n",
859
+ "\n",
860
+ "\n",
861
+ "85/200\n",
862
+ "loading file: i:\\NLP_Datasets\\Reddit\\2022\\RC_2022-06_11.parquet\n",
863
+ "original len of read file: 10000001\n",
864
+ "\n",
865
+ "\n",
866
+ "\n",
867
+ "\n",
868
+ "86/200\n",
869
+ "loading file: i:\\NLP_Datasets\\Reddit\\2022\\RC_2022-06_12.parquet\n",
870
+ "original len of read file: 10000001\n",
871
+ "\n",
872
+ "\n",
873
+ "\n",
874
+ "\n",
875
+ "87/200\n",
876
+ "loading file: i:\\NLP_Datasets\\Reddit\\2022\\RC_2022-06_13.parquet\n",
877
+ "original len of read file: 10000001\n",
878
+ "\n",
879
+ "\n",
880
+ "\n",
881
+ "\n",
882
+ "88/200\n",
883
+ "loading file: i:\\NLP_Datasets\\Reddit\\2022\\RC_2022-06_14.parquet\n",
884
+ "original len of read file: 10000001\n",
885
+ "\n",
886
+ "\n",
887
+ "\n",
888
+ "\n",
889
+ "89/200\n",
890
+ "loading file: i:\\NLP_Datasets\\Reddit\\2022\\RC_2022-06_15.parquet\n",
891
+ "original len of read file: 10000001\n",
892
+ "\n",
893
+ "\n",
894
+ "\n",
895
+ "\n",
896
+ "90/200\n",
897
+ "loading file: i:\\NLP_Datasets\\Reddit\\2022\\RC_2022-06_16.parquet\n",
898
+ "original len of read file: 2232978\n",
899
+ "\n",
900
+ "\n",
901
+ "\n",
902
+ "\n",
903
+ "91/200\n",
904
+ "loading file: i:\\NLP_Datasets\\Reddit\\2022\\RC_2022-06_2.parquet\n",
905
+ "original len of read file: 10000001\n",
906
+ "\n",
907
+ "\n",
908
+ "\n",
909
+ "\n",
910
+ "92/200\n",
911
+ "loading file: i:\\NLP_Datasets\\Reddit\\2022\\RC_2022-06_3.parquet\n",
912
+ "original len of read file: 10000001\n",
913
+ "\n",
914
+ "\n",
915
+ "\n",
916
+ "\n",
917
+ "93/200\n",
918
+ "loading file: i:\\NLP_Datasets\\Reddit\\2022\\RC_2022-06_4.parquet\n",
919
+ "original len of read file: 10000001\n",
920
+ "\n",
921
+ "\n",
922
+ "\n",
923
+ "\n",
924
+ "94/200\n",
925
+ "loading file: i:\\NLP_Datasets\\Reddit\\2022\\RC_2022-06_5.parquet\n",
926
+ "original len of read file: 10000001\n",
927
+ "\n",
928
+ "\n",
929
+ "\n",
930
+ "\n",
931
+ "95/200\n",
932
+ "loading file: i:\\NLP_Datasets\\Reddit\\2022\\RC_2022-06_6.parquet\n",
933
+ "original len of read file: 10000001\n",
934
+ "\n",
935
+ "\n",
936
+ "\n",
937
+ "\n",
938
+ "96/200\n",
939
+ "loading file: i:\\NLP_Datasets\\Reddit\\2022\\RC_2022-06_7.parquet\n",
940
+ "original len of read file: 10000001\n",
941
+ "\n",
942
+ "\n",
943
+ "\n",
944
+ "\n",
945
+ "97/200\n",
946
+ "loading file: i:\\NLP_Datasets\\Reddit\\2022\\RC_2022-06_8.parquet\n",
947
+ "original len of read file: 10000001\n",
948
+ "\n",
949
+ "\n",
950
+ "\n",
951
+ "\n",
952
+ "98/200\n",
953
+ "loading file: i:\\NLP_Datasets\\Reddit\\2022\\RC_2022-06_9.parquet\n",
954
+ "original len of read file: 10000001\n",
955
+ "\n",
956
+ "\n",
957
+ "\n",
958
+ "\n",
959
+ "99/200\n",
960
+ "loading file: i:\\NLP_Datasets\\Reddit\\2022\\RC_2022-07_1.parquet\n",
961
+ "original len of read file: 10000001\n",
962
+ "\n",
963
+ "\n",
964
+ "\n",
965
+ "\n",
966
+ "100/200\n",
967
+ "loading file: i:\\NLP_Datasets\\Reddit\\2022\\RC_2022-07_10.parquet\n",
968
+ "original len of read file: 10000001\n",
969
+ "\n",
970
+ "\n",
971
+ "\n",
972
+ "\n",
973
+ "101/200\n",
974
+ "loading file: i:\\NLP_Datasets\\Reddit\\2022\\RC_2022-07_11.parquet\n",
975
+ "original len of read file: 10000001\n",
976
+ "\n",
977
+ "\n",
978
+ "\n",
979
+ "\n",
980
+ "102/200\n",
981
+ "loading file: i:\\NLP_Datasets\\Reddit\\2022\\RC_2022-07_12.parquet\n",
982
+ "original len of read file: 10000001\n",
983
+ "\n",
984
+ "\n",
985
+ "\n",
986
+ "\n",
987
+ "103/200\n",
988
+ "loading file: i:\\NLP_Datasets\\Reddit\\2022\\RC_2022-07_13.parquet\n",
989
+ "original len of read file: 10000001\n",
990
+ "\n",
991
+ "\n",
992
+ "\n",
993
+ "\n",
994
+ "104/200\n",
995
+ "loading file: i:\\NLP_Datasets\\Reddit\\2022\\RC_2022-07_14.parquet\n",
996
+ "original len of read file: 10000001\n",
997
+ "\n",
998
+ "\n",
999
+ "\n",
1000
+ "\n",
1001
+ "105/200\n",
1002
+ "loading file: i:\\NLP_Datasets\\Reddit\\2022\\RC_2022-07_15.parquet\n",
1003
+ "original len of read file: 10000001\n",
1004
+ "\n",
1005
+ "\n",
1006
+ "\n",
1007
+ "\n",
1008
+ "106/200\n",
1009
+ "loading file: i:\\NLP_Datasets\\Reddit\\2022\\RC_2022-07_16.parquet\n",
1010
+ "original len of read file: 10000001\n",
1011
+ "\n",
1012
+ "\n",
1013
+ "\n",
1014
+ "\n",
1015
+ "107/200\n",
1016
+ "loading file: i:\\NLP_Datasets\\Reddit\\2022\\RC_2022-07_17.parquet\n",
1017
+ "original len of read file: 7713277\n",
1018
+ "\n",
1019
+ "\n",
1020
+ "\n",
1021
+ "\n",
1022
+ "108/200\n",
1023
+ "loading file: i:\\NLP_Datasets\\Reddit\\2022\\RC_2022-07_2.parquet\n",
1024
+ "original len of read file: 10000001\n",
1025
+ "\n",
1026
+ "\n",
1027
+ "\n",
1028
+ "\n",
1029
+ "109/200\n",
1030
+ "loading file: i:\\NLP_Datasets\\Reddit\\2022\\RC_2022-07_3.parquet\n",
1031
+ "original len of read file: 10000001\n",
1032
+ "\n",
1033
+ "\n",
1034
+ "\n",
1035
+ "\n",
1036
+ "110/200\n",
1037
+ "loading file: i:\\NLP_Datasets\\Reddit\\2022\\RC_2022-07_4.parquet\n",
1038
+ "original len of read file: 10000001\n",
1039
+ "\n",
1040
+ "\n",
1041
+ "\n",
1042
+ "\n",
1043
+ "111/200\n",
1044
+ "loading file: i:\\NLP_Datasets\\Reddit\\2022\\RC_2022-07_5.parquet\n",
1045
+ "original len of read file: 10000001\n",
1046
+ "\n",
1047
+ "\n",
1048
+ "\n",
1049
+ "\n",
1050
+ "112/200\n",
1051
+ "loading file: i:\\NLP_Datasets\\Reddit\\2022\\RC_2022-07_6.parquet\n",
1052
+ "original len of read file: 10000001\n",
1053
+ "\n",
1054
+ "\n",
1055
+ "\n",
1056
+ "\n",
1057
+ "113/200\n",
1058
+ "loading file: i:\\NLP_Datasets\\Reddit\\2022\\RC_2022-07_7.parquet\n",
1059
+ "original len of read file: 10000001\n",
1060
+ "\n",
1061
+ "\n",
1062
+ "\n",
1063
+ "\n",
1064
+ "114/200\n",
1065
+ "loading file: i:\\NLP_Datasets\\Reddit\\2022\\RC_2022-07_8.parquet\n",
1066
+ "original len of read file: 10000001\n",
1067
+ "\n",
1068
+ "\n",
1069
+ "\n",
1070
+ "\n",
1071
+ "115/200\n",
1072
+ "loading file: i:\\NLP_Datasets\\Reddit\\2022\\RC_2022-07_9.parquet\n",
1073
+ "original len of read file: 10000001\n",
1074
+ "\n",
1075
+ "\n",
1076
+ "\n",
1077
+ "\n",
1078
+ "116/200\n",
1079
+ "loading file: i:\\NLP_Datasets\\Reddit\\2022\\RC_2022-08_1.parquet\n",
1080
+ "original len of read file: 10000001\n",
1081
+ "\n",
1082
+ "\n",
1083
+ "\n",
1084
+ "\n",
1085
+ "117/200\n",
1086
+ "loading file: i:\\NLP_Datasets\\Reddit\\2022\\RC_2022-08_10.parquet\n",
1087
+ "original len of read file: 10000001\n",
1088
+ "\n",
1089
+ "\n",
1090
+ "\n",
1091
+ "\n",
1092
+ "118/200\n",
1093
+ "loading file: i:\\NLP_Datasets\\Reddit\\2022\\RC_2022-08_11.parquet\n",
1094
+ "original len of read file: 10000001\n",
1095
+ "\n",
1096
+ "\n",
1097
+ "\n",
1098
+ "\n",
1099
+ "119/200\n",
1100
+ "loading file: i:\\NLP_Datasets\\Reddit\\2022\\RC_2022-08_12.parquet\n",
1101
+ "original len of read file: 10000001\n",
1102
+ "\n",
1103
+ "\n",
1104
+ "\n",
1105
+ "\n",
1106
+ "120/200\n",
1107
+ "loading file: i:\\NLP_Datasets\\Reddit\\2022\\RC_2022-08_13.parquet\n",
1108
+ "original len of read file: 10000001\n",
1109
+ "\n",
1110
+ "\n",
1111
+ "\n",
1112
+ "\n",
1113
+ "121/200\n",
1114
+ "loading file: i:\\NLP_Datasets\\Reddit\\2022\\RC_2022-08_14.parquet\n",
1115
+ "original len of read file: 10000001\n",
1116
+ "\n",
1117
+ "\n",
1118
+ "\n",
1119
+ "\n",
1120
+ "122/200\n",
1121
+ "loading file: i:\\NLP_Datasets\\Reddit\\2022\\RC_2022-08_15.parquet\n",
1122
+ "original len of read file: 10000001\n",
1123
+ "\n",
1124
+ "\n",
1125
+ "\n",
1126
+ "\n",
1127
+ "123/200\n",
1128
+ "loading file: i:\\NLP_Datasets\\Reddit\\2022\\RC_2022-08_16.parquet\n",
1129
+ "original len of read file: 10000001\n",
1130
+ "\n",
1131
+ "\n",
1132
+ "\n",
1133
+ "\n",
1134
+ "124/200\n",
1135
+ "loading file: i:\\NLP_Datasets\\Reddit\\2022\\RC_2022-08_17.parquet\n",
1136
+ "original len of read file: 10000001\n",
1137
+ "\n",
1138
+ "\n",
1139
+ "\n",
1140
+ "\n",
1141
+ "125/200\n",
1142
+ "loading file: i:\\NLP_Datasets\\Reddit\\2022\\RC_2022-08_18.parquet\n",
1143
+ "original len of read file: 556106\n",
1144
+ "\n",
1145
+ "\n",
1146
+ "\n",
1147
+ "\n",
1148
+ "126/200\n",
1149
+ "loading file: i:\\NLP_Datasets\\Reddit\\2022\\RC_2022-08_2.parquet\n",
1150
+ "original len of read file: 10000001\n",
1151
+ "\n",
1152
+ "\n",
1153
+ "\n",
1154
+ "\n",
1155
+ "127/200\n",
1156
+ "loading file: i:\\NLP_Datasets\\Reddit\\2022\\RC_2022-08_3.parquet\n",
1157
+ "original len of read file: 10000001\n",
1158
+ "\n",
1159
+ "\n",
1160
+ "\n",
1161
+ "\n",
1162
+ "128/200\n",
1163
+ "loading file: i:\\NLP_Datasets\\Reddit\\2022\\RC_2022-08_4.parquet\n",
1164
+ "original len of read file: 10000001\n",
1165
+ "\n",
1166
+ "\n",
1167
+ "\n",
1168
+ "\n",
1169
+ "129/200\n",
1170
+ "loading file: i:\\NLP_Datasets\\Reddit\\2022\\RC_2022-08_5.parquet\n",
1171
+ "original len of read file: 10000001\n",
1172
+ "\n",
1173
+ "\n",
1174
+ "\n",
1175
+ "\n",
1176
+ "130/200\n",
1177
+ "loading file: i:\\NLP_Datasets\\Reddit\\2022\\RC_2022-08_6.parquet\n",
1178
+ "original len of read file: 10000001\n",
1179
+ "\n",
1180
+ "\n",
1181
+ "\n",
1182
+ "\n",
1183
+ "131/200\n",
1184
+ "loading file: i:\\NLP_Datasets\\Reddit\\2022\\RC_2022-08_7.parquet\n",
1185
+ "original len of read file: 10000001\n",
1186
+ "\n",
1187
+ "\n",
1188
+ "\n",
1189
+ "\n",
1190
+ "132/200\n",
1191
+ "loading file: i:\\NLP_Datasets\\Reddit\\2022\\RC_2022-08_8.parquet\n",
1192
+ "original len of read file: 10000001\n",
1193
+ "\n",
1194
+ "\n",
1195
+ "\n",
1196
+ "\n",
1197
+ "133/200\n",
1198
+ "loading file: i:\\NLP_Datasets\\Reddit\\2022\\RC_2022-08_9.parquet\n",
1199
+ "original len of read file: 10000001\n",
1200
+ "\n",
1201
+ "\n",
1202
+ "\n",
1203
+ "\n",
1204
+ "134/200\n",
1205
+ "loading file: i:\\NLP_Datasets\\Reddit\\2022\\RC_2022-09_1.parquet\n",
1206
+ "original len of read file: 10000001\n",
1207
+ "\n",
1208
+ "\n",
1209
+ "\n",
1210
+ "\n",
1211
+ "135/200\n",
1212
+ "loading file: i:\\NLP_Datasets\\Reddit\\2022\\RC_2022-09_10.parquet\n",
1213
+ "original len of read file: 10000001\n",
1214
+ "\n",
1215
+ "\n",
1216
+ "\n",
1217
+ "\n",
1218
+ "136/200\n",
1219
+ "loading file: i:\\NLP_Datasets\\Reddit\\2022\\RC_2022-09_11.parquet\n",
1220
+ "original len of read file: 10000001\n",
1221
+ "\n",
1222
+ "\n",
1223
+ "\n",
1224
+ "\n",
1225
+ "137/200\n",
1226
+ "loading file: i:\\NLP_Datasets\\Reddit\\2022\\RC_2022-09_12.parquet\n",
1227
+ "original len of read file: 10000001\n",
1228
+ "\n",
1229
+ "\n",
1230
+ "\n",
1231
+ "\n",
1232
+ "138/200\n",
1233
+ "loading file: i:\\NLP_Datasets\\Reddit\\2022\\RC_2022-09_13.parquet\n",
1234
+ "original len of read file: 10000001\n",
1235
+ "\n",
1236
+ "\n",
1237
+ "\n",
1238
+ "\n",
1239
+ "139/200\n",
1240
+ "loading file: i:\\NLP_Datasets\\Reddit\\2022\\RC_2022-09_14.parquet\n",
1241
+ "original len of read file: 10000001\n",
1242
+ "\n",
1243
+ "\n",
1244
+ "\n",
1245
+ "\n",
1246
+ "140/200\n",
1247
+ "loading file: i:\\NLP_Datasets\\Reddit\\2022\\RC_2022-09_15.parquet\n",
1248
+ "original len of read file: 10000001\n",
1249
+ "\n",
1250
+ "\n",
1251
+ "\n",
1252
+ "\n",
1253
+ "141/200\n",
1254
+ "loading file: i:\\NLP_Datasets\\Reddit\\2022\\RC_2022-09_16.parquet\n",
1255
+ "original len of read file: 10000001\n",
1256
+ "\n",
1257
+ "\n",
1258
+ "\n",
1259
+ "\n",
1260
+ "142/200\n",
1261
+ "loading file: i:\\NLP_Datasets\\Reddit\\2022\\RC_2022-09_17.parquet\n",
1262
+ "original len of read file: 1191472\n",
1263
+ "\n",
1264
+ "\n",
1265
+ "\n",
1266
+ "\n",
1267
+ "143/200\n",
1268
+ "loading file: i:\\NLP_Datasets\\Reddit\\2022\\RC_2022-09_2.parquet\n",
1269
+ "original len of read file: 10000001\n",
1270
+ "\n",
1271
+ "\n",
1272
+ "\n",
1273
+ "\n",
1274
+ "144/200\n",
1275
+ "loading file: i:\\NLP_Datasets\\Reddit\\2022\\RC_2022-09_3.parquet\n",
1276
+ "original len of read file: 10000001\n",
1277
+ "\n",
1278
+ "\n",
1279
+ "\n",
1280
+ "\n",
1281
+ "145/200\n",
1282
+ "loading file: i:\\NLP_Datasets\\Reddit\\2022\\RC_2022-09_4.parquet\n",
1283
+ "original len of read file: 10000001\n",
1284
+ "\n",
1285
+ "\n",
1286
+ "\n",
1287
+ "\n",
1288
+ "146/200\n",
1289
+ "loading file: i:\\NLP_Datasets\\Reddit\\2022\\RC_2022-09_5.parquet\n",
1290
+ "original len of read file: 10000001\n",
1291
+ "\n",
1292
+ "\n",
1293
+ "\n",
1294
+ "\n",
1295
+ "147/200\n",
1296
+ "loading file: i:\\NLP_Datasets\\Reddit\\2022\\RC_2022-09_6.parquet\n",
1297
+ "original len of read file: 10000001\n",
1298
+ "\n",
1299
+ "\n",
1300
+ "\n",
1301
+ "\n",
1302
+ "148/200\n",
1303
+ "loading file: i:\\NLP_Datasets\\Reddit\\2022\\RC_2022-09_7.parquet\n",
1304
+ "original len of read file: 10000001\n",
1305
+ "\n",
1306
+ "\n",
1307
+ "\n",
1308
+ "\n",
1309
+ "149/200\n",
1310
+ "loading file: i:\\NLP_Datasets\\Reddit\\2022\\RC_2022-09_8.parquet\n",
1311
+ "original len of read file: 10000001\n",
1312
+ "\n",
1313
+ "\n",
1314
+ "\n",
1315
+ "\n",
1316
+ "150/200\n",
1317
+ "loading file: i:\\NLP_Datasets\\Reddit\\2022\\RC_2022-09_9.parquet\n",
1318
+ "original len of read file: 10000001\n",
1319
+ "\n",
1320
+ "\n",
1321
+ "\n",
1322
+ "\n",
1323
+ "151/200\n",
1324
+ "loading file: i:\\NLP_Datasets\\Reddit\\2022\\RC_2022-10_1.parquet\n",
1325
+ "original len of read file: 10000001\n",
1326
+ "\n",
1327
+ "\n",
1328
+ "\n",
1329
+ "\n",
1330
+ "152/200\n",
1331
+ "loading file: i:\\NLP_Datasets\\Reddit\\2022\\RC_2022-10_10.parquet\n",
1332
+ "original len of read file: 10000001\n",
1333
+ "\n",
1334
+ "\n",
1335
+ "\n",
1336
+ "\n",
1337
+ "153/200\n",
1338
+ "loading file: i:\\NLP_Datasets\\Reddit\\2022\\RC_2022-10_11.parquet\n",
1339
+ "original len of read file: 10000001\n",
1340
+ "\n",
1341
+ "\n",
1342
+ "\n",
1343
+ "\n",
1344
+ "154/200\n",
1345
+ "loading file: i:\\NLP_Datasets\\Reddit\\2022\\RC_2022-10_12.parquet\n",
1346
+ "original len of read file: 10000001\n",
1347
+ "\n",
1348
+ "\n",
1349
+ "\n",
1350
+ "\n",
1351
+ "155/200\n",
1352
+ "loading file: i:\\NLP_Datasets\\Reddit\\2022\\RC_2022-10_13.parquet\n",
1353
+ "original len of read file: 10000001\n",
1354
+ "\n",
1355
+ "\n",
1356
+ "\n",
1357
+ "\n",
1358
+ "156/200\n",
1359
+ "loading file: i:\\NLP_Datasets\\Reddit\\2022\\RC_2022-10_14.parquet\n",
1360
+ "original len of read file: 10000001\n",
1361
+ "\n",
1362
+ "\n",
1363
+ "\n",
1364
+ "\n",
1365
+ "157/200\n",
1366
+ "loading file: i:\\NLP_Datasets\\Reddit\\2022\\RC_2022-10_15.parquet\n",
1367
+ "original len of read file: 10000001\n",
1368
+ "\n",
1369
+ "\n",
1370
+ "\n",
1371
+ "\n",
1372
+ "158/200\n",
1373
+ "loading file: i:\\NLP_Datasets\\Reddit\\2022\\RC_2022-10_16.parquet\n",
1374
+ "original len of read file: 10000001\n",
1375
+ "\n",
1376
+ "\n",
1377
+ "\n",
1378
+ "\n",
1379
+ "159/200\n",
1380
+ "loading file: i:\\NLP_Datasets\\Reddit\\2022\\RC_2022-10_17.parquet\n",
1381
+ "original len of read file: 3059217\n",
1382
+ "\n",
1383
+ "\n",
1384
+ "\n",
1385
+ "\n",
1386
+ "160/200\n",
1387
+ "loading file: i:\\NLP_Datasets\\Reddit\\2022\\RC_2022-10_2.parquet\n",
1388
+ "original len of read file: 10000001\n",
1389
+ "\n",
1390
+ "\n",
1391
+ "\n",
1392
+ "\n",
1393
+ "161/200\n",
1394
+ "loading file: i:\\NLP_Datasets\\Reddit\\2022\\RC_2022-10_3.parquet\n",
1395
+ "original len of read file: 10000001\n",
1396
+ "\n",
1397
+ "\n",
1398
+ "\n",
1399
+ "\n",
1400
+ "162/200\n",
1401
+ "loading file: i:\\NLP_Datasets\\Reddit\\2022\\RC_2022-10_4.parquet\n",
1402
+ "original len of read file: 10000001\n",
1403
+ "\n",
1404
+ "\n",
1405
+ "\n",
1406
+ "\n",
1407
+ "163/200\n",
1408
+ "loading file: i:\\NLP_Datasets\\Reddit\\2022\\RC_2022-10_5.parquet\n",
1409
+ "original len of read file: 10000001\n",
1410
+ "\n",
1411
+ "\n",
1412
+ "\n",
1413
+ "\n",
1414
+ "164/200\n",
1415
+ "loading file: i:\\NLP_Datasets\\Reddit\\2022\\RC_2022-10_6.parquet\n",
1416
+ "original len of read file: 10000001\n",
1417
+ "\n",
1418
+ "\n",
1419
+ "\n",
1420
+ "\n",
1421
+ "165/200\n",
1422
+ "loading file: i:\\NLP_Datasets\\Reddit\\2022\\RC_2022-10_7.parquet\n",
1423
+ "original len of read file: 10000001\n",
1424
+ "\n",
1425
+ "\n",
1426
+ "\n",
1427
+ "\n",
1428
+ "166/200\n",
1429
+ "loading file: i:\\NLP_Datasets\\Reddit\\2022\\RC_2022-10_8.parquet\n",
1430
+ "original len of read file: 10000001\n",
1431
+ "\n",
1432
+ "\n",
1433
+ "\n",
1434
+ "\n",
1435
+ "167/200\n",
1436
+ "loading file: i:\\NLP_Datasets\\Reddit\\2022\\RC_2022-10_9.parquet\n",
1437
+ "original len of read file: 10000001\n",
1438
+ "\n",
1439
+ "\n",
1440
+ "\n",
1441
+ "\n",
1442
+ "168/200\n",
1443
+ "loading file: i:\\NLP_Datasets\\Reddit\\2022\\RC_2022-11_1.parquet\n",
1444
+ "original len of read file: 10000001\n",
1445
+ "\n",
1446
+ "\n",
1447
+ "\n",
1448
+ "\n",
1449
+ "169/200\n",
1450
+ "loading file: i:\\NLP_Datasets\\Reddit\\2022\\RC_2022-11_10.parquet\n",
1451
+ "original len of read file: 10000001\n",
1452
+ "\n",
1453
+ "\n",
1454
+ "\n",
1455
+ "\n",
1456
+ "170/200\n",
1457
+ "loading file: i:\\NLP_Datasets\\Reddit\\2022\\RC_2022-11_11.parquet\n",
1458
+ "original len of read file: 10000001\n",
1459
+ "\n",
1460
+ "\n",
1461
+ "\n",
1462
+ "\n",
1463
+ "171/200\n",
1464
+ "loading file: i:\\NLP_Datasets\\Reddit\\2022\\RC_2022-11_12.parquet\n",
1465
+ "original len of read file: 10000001\n",
1466
+ "\n",
1467
+ "\n",
1468
+ "\n",
1469
+ "\n",
1470
+ "172/200\n",
1471
+ "loading file: i:\\NLP_Datasets\\Reddit\\2022\\RC_2022-11_13.parquet\n",
1472
+ "original len of read file: 10000001\n",
1473
+ "\n",
1474
+ "\n",
1475
+ "\n",
1476
+ "\n",
1477
+ "173/200\n",
1478
+ "loading file: i:\\NLP_Datasets\\Reddit\\2022\\RC_2022-11_14.parquet\n",
1479
+ "original len of read file: 10000001\n",
1480
+ "\n",
1481
+ "\n",
1482
+ "\n",
1483
+ "\n",
1484
+ "174/200\n",
1485
+ "loading file: i:\\NLP_Datasets\\Reddit\\2022\\RC_2022-11_15.parquet\n",
1486
+ "original len of read file: 10000001\n",
1487
+ "\n",
1488
+ "\n",
1489
+ "\n",
1490
+ "\n",
1491
+ "175/200\n",
1492
+ "loading file: i:\\NLP_Datasets\\Reddit\\2022\\RC_2022-11_16.parquet\n",
1493
+ "original len of read file: 7883427\n",
1494
+ "\n",
1495
+ "\n",
1496
+ "\n",
1497
+ "\n",
1498
+ "176/200\n",
1499
+ "loading file: i:\\NLP_Datasets\\Reddit\\2022\\RC_2022-11_2.parquet\n",
1500
+ "original len of read file: 10000001\n",
1501
+ "\n",
1502
+ "\n",
1503
+ "\n",
1504
+ "\n",
1505
+ "177/200\n",
1506
+ "loading file: i:\\NLP_Datasets\\Reddit\\2022\\RC_2022-11_3.parquet\n",
1507
+ "original len of read file: 10000001\n",
1508
+ "\n",
1509
+ "\n",
1510
+ "\n",
1511
+ "\n",
1512
+ "178/200\n",
1513
+ "loading file: i:\\NLP_Datasets\\Reddit\\2022\\RC_2022-11_4.parquet\n",
1514
+ "original len of read file: 10000001\n",
1515
+ "\n",
1516
+ "\n",
1517
+ "\n",
1518
+ "\n",
1519
+ "179/200\n",
1520
+ "loading file: i:\\NLP_Datasets\\Reddit\\2022\\RC_2022-11_5.parquet\n",
1521
+ "original len of read file: 10000001\n",
1522
+ "\n",
1523
+ "\n",
1524
+ "\n",
1525
+ "\n",
1526
+ "180/200\n",
1527
+ "loading file: i:\\NLP_Datasets\\Reddit\\2022\\RC_2022-11_6.parquet\n",
1528
+ "original len of read file: 10000001\n",
1529
+ "\n",
1530
+ "\n",
1531
+ "\n",
1532
+ "\n",
1533
+ "181/200\n",
1534
+ "loading file: i:\\NLP_Datasets\\Reddit\\2022\\RC_2022-11_7.parquet\n",
1535
+ "original len of read file: 10000001\n",
1536
+ "\n",
1537
+ "\n",
1538
+ "\n",
1539
+ "\n",
1540
+ "182/200\n",
1541
+ "loading file: i:\\NLP_Datasets\\Reddit\\2022\\RC_2022-11_8.parquet\n",
1542
+ "original len of read file: 10000001\n",
1543
+ "\n",
1544
+ "\n",
1545
+ "\n",
1546
+ "\n",
1547
+ "183/200\n",
1548
+ "loading file: i:\\NLP_Datasets\\Reddit\\2022\\RC_2022-11_9.parquet\n",
1549
+ "original len of read file: 10000001\n",
1550
+ "\n",
1551
+ "\n",
1552
+ "\n",
1553
+ "\n",
1554
+ "184/200\n",
1555
+ "loading file: i:\\NLP_Datasets\\Reddit\\2022\\RC_2022-12_1.parquet\n",
1556
+ "original len of read file: 10000001\n",
1557
+ "\n",
1558
+ "\n",
1559
+ "\n",
1560
+ "\n",
1561
+ "185/200\n",
1562
+ "loading file: i:\\NLP_Datasets\\Reddit\\2022\\RC_2022-12_10.parquet\n",
1563
+ "original len of read file: 10000001\n",
1564
+ "\n",
1565
+ "\n",
1566
+ "\n",
1567
+ "\n",
1568
+ "186/200\n",
1569
+ "loading file: i:\\NLP_Datasets\\Reddit\\2022\\RC_2022-12_11.parquet\n",
1570
+ "original len of read file: 10000001\n",
1571
+ "\n",
1572
+ "\n",
1573
+ "\n",
1574
+ "\n",
1575
+ "187/200\n",
1576
+ "loading file: i:\\NLP_Datasets\\Reddit\\2022\\RC_2022-12_12.parquet\n",
1577
+ "original len of read file: 10000001\n",
1578
+ "\n",
1579
+ "\n",
1580
+ "\n",
1581
+ "\n",
1582
+ "188/200\n",
1583
+ "loading file: i:\\NLP_Datasets\\Reddit\\2022\\RC_2022-12_13.parquet\n",
1584
+ "original len of read file: 10000001\n",
1585
+ "\n",
1586
+ "\n",
1587
+ "\n",
1588
+ "\n",
1589
+ "189/200\n",
1590
+ "loading file: i:\\NLP_Datasets\\Reddit\\2022\\RC_2022-12_14.parquet\n",
1591
+ "original len of read file: 10000001\n",
1592
+ "\n",
1593
+ "\n",
1594
+ "\n",
1595
+ "\n",
1596
+ "190/200\n",
1597
+ "loading file: i:\\NLP_Datasets\\Reddit\\2022\\RC_2022-12_15.parquet\n",
1598
+ "original len of read file: 10000001\n",
1599
+ "\n",
1600
+ "\n",
1601
+ "\n",
1602
+ "\n",
1603
+ "191/200\n",
1604
+ "loading file: i:\\NLP_Datasets\\Reddit\\2022\\RC_2022-12_16.parquet\n",
1605
+ "original len of read file: 10000001\n",
1606
+ "\n",
1607
+ "\n",
1608
+ "\n",
1609
+ "\n",
1610
+ "192/200\n",
1611
+ "loading file: i:\\NLP_Datasets\\Reddit\\2022\\RC_2022-12_17.parquet\n",
1612
+ "original len of read file: 3330060\n",
1613
+ "\n",
1614
+ "\n",
1615
+ "\n",
1616
+ "\n",
1617
+ "193/200\n",
1618
+ "loading file: i:\\NLP_Datasets\\Reddit\\2022\\RC_2022-12_2.parquet\n",
1619
+ "original len of read file: 10000001\n",
1620
+ "\n",
1621
+ "\n",
1622
+ "\n",
1623
+ "\n",
1624
+ "194/200\n",
1625
+ "loading file: i:\\NLP_Datasets\\Reddit\\2022\\RC_2022-12_3.parquet\n",
1626
+ "original len of read file: 10000001\n",
1627
+ "\n",
1628
+ "\n",
1629
+ "\n",
1630
+ "\n",
1631
+ "195/200\n",
1632
+ "loading file: i:\\NLP_Datasets\\Reddit\\2022\\RC_2022-12_4.parquet\n",
1633
+ "original len of read file: 10000001\n",
1634
+ "\n",
1635
+ "\n",
1636
+ "\n",
1637
+ "\n",
1638
+ "196/200\n",
1639
+ "loading file: i:\\NLP_Datasets\\Reddit\\2022\\RC_2022-12_5.parquet\n",
1640
+ "original len of read file: 10000001\n",
1641
+ "\n",
1642
+ "\n",
1643
+ "\n",
1644
+ "\n",
1645
+ "197/200\n",
1646
+ "loading file: i:\\NLP_Datasets\\Reddit\\2022\\RC_2022-12_6.parquet\n",
1647
+ "original len of read file: 10000001\n",
1648
+ "\n",
1649
+ "\n",
1650
+ "\n",
1651
+ "\n",
1652
+ "198/200\n",
1653
+ "loading file: i:\\NLP_Datasets\\Reddit\\2022\\RC_2022-12_7.parquet\n",
1654
+ "original len of read file: 10000001\n",
1655
+ "\n",
1656
+ "\n",
1657
+ "\n",
1658
+ "\n",
1659
+ "199/200\n",
1660
+ "loading file: i:\\NLP_Datasets\\Reddit\\2022\\RC_2022-12_8.parquet\n",
1661
+ "original len of read file: 10000001\n",
1662
+ "\n",
1663
+ "\n",
1664
+ "\n",
1665
+ "\n",
1666
+ "200/200\n",
1667
+ "loading file: i:\\NLP_Datasets\\Reddit\\2022\\RC_2022-12_9.parquet\n",
1668
+ "original len of read file: 10000001\n",
1669
+ "\n",
1670
+ "\n",
1671
+ "\n",
1672
+ "\n"
1673
+ ]
1674
+ }
1675
+ ],
1676
+ "source": [
1677
+ "process_years = ['2022']\n",
1678
+ "file_counter = 1\n",
1679
+ "\n",
1680
+ "for process_year in process_years:\n",
1681
+ " filepaths = [os.getcwd() + os.sep + process_year + os.sep + filepath for filepath in os.listdir(os.getcwd() + os.sep + process_year) if filepath.endswith('.parquet') and 'processed' not in filepath]\n",
1682
+ " #filepaths = filepaths[6]\n",
1683
+ " filepaths_fi = [os.getcwd() + os.sep + 'finnish' + os.sep + process_year + os.sep + filepath for filepath in os.listdir(os.getcwd() + os.sep + process_year) if filepath.endswith('.parquet') and 'processed' not in filepath]\n",
1684
+ " #filepaths_fi = filepaths_fi[69:]\n",
1685
+ " for i, filepath in enumerate(filepaths):\n",
1686
+ " print(f'{i+1}/{len(filepaths)}')\n",
1687
+ " print(f'loading file: {filepaths[i]}')\n",
1688
+ " pl_df = pl.read_parquet(filepath)\n",
1689
+ " print(f'original len of read file: {len(pl_df)}')\n",
1690
+ " pl_df = pl_df.apply(lambda row: pred_lang(row))\n",
1691
+ " pl_df = pl_df.rename({'column_0': 'subreddit', 'column_1': 'created_utc', 'column_2': 'score', 'column_3': 'body', 'column_4':'predicted_language', 'column_5': 'probability'})\n",
1692
+ " pl_df = pl_df.filter(pl.col(\"probability\") > 0.7)\n",
1693
+ " pl_df.write_parquet(f'{filepath.replace(\".parquet\", \"_processed.parquet\")}')\n",
1694
+ " pl_df = pl_df.filter(pl.col(\"predicted_language\").str.contains('fi'))\n",
1695
+ " pl_df.write_parquet(f'{filepaths_fi[i].replace(\".parquet\", \"_processed.parquet\")}')\n",
1696
+ " print('\\n')\n",
1697
+ " print('\\n')"
1698
+ ]
1699
+ }
1700
+ ],
1701
+ "metadata": {
1702
+ "kernelspec": {
1703
+ "display_name": "Python 3.8.8 64-bit ('Anaconda3')",
1704
+ "language": "python",
1705
+ "name": "python3"
1706
+ },
1707
+ "language_info": {
1708
+ "codemirror_mode": {
1709
+ "name": "ipython",
1710
+ "version": 3
1711
+ },
1712
+ "file_extension": ".py",
1713
+ "mimetype": "text/x-python",
1714
+ "name": "python",
1715
+ "nbconvert_exporter": "python",
1716
+ "pygments_lexer": "ipython3",
1717
+ "version": "3.8.8"
1718
+ },
1719
+ "vscode": {
1720
+ "interpreter": {
1721
+ "hash": "f49206fcf84a9145e7e21228cbafa911d1ac18292303b01e865d8267a9c448f7"
1722
+ }
1723
+ }
1724
+ },
1725
+ "nbformat": 4,
1726
+ "nbformat_minor": 2
1727
+ }
process_zst_to_parquet_new.ipynb ADDED
@@ -0,0 +1,3149 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "code",
5
+ "execution_count": 17,
6
+ "metadata": {},
7
+ "outputs": [],
8
+ "source": [
9
+ "process_years = ['2022']\n",
10
+ "file_counter = 1\n",
11
+ "\n",
12
+ "for process_year in process_years:\n",
13
+ " filepaths = [os.getcwd() + os.sep + process_year + os.sep + filepath for filepath in os.listdir(os.getcwd() + os.sep + process_year) if filepath.endswith('.zst')]\n",
14
+ " "
15
+ ]
16
+ },
17
+ {
18
+ "cell_type": "code",
19
+ "execution_count": 19,
20
+ "metadata": {},
21
+ "outputs": [
22
+ {
23
+ "data": {
24
+ "text/plain": [
25
+ "['i:\\\\NLP_Datasets\\\\Reddit\\\\2022\\\\RC_2022-01.zst',\n",
26
+ " 'i:\\\\NLP_Datasets\\\\Reddit\\\\2022\\\\RC_2022-02.zst',\n",
27
+ " 'i:\\\\NLP_Datasets\\\\Reddit\\\\2022\\\\RC_2022-03.zst',\n",
28
+ " 'i:\\\\NLP_Datasets\\\\Reddit\\\\2022\\\\RC_2022-04.zst',\n",
29
+ " 'i:\\\\NLP_Datasets\\\\Reddit\\\\2022\\\\RC_2022-05.zst',\n",
30
+ " 'i:\\\\NLP_Datasets\\\\Reddit\\\\2022\\\\RC_2022-06.zst',\n",
31
+ " 'i:\\\\NLP_Datasets\\\\Reddit\\\\2022\\\\RC_2022-07.zst',\n",
32
+ " 'i:\\\\NLP_Datasets\\\\Reddit\\\\2022\\\\RC_2022-08.zst',\n",
33
+ " 'i:\\\\NLP_Datasets\\\\Reddit\\\\2022\\\\RC_2022-09.zst',\n",
34
+ " 'i:\\\\NLP_Datasets\\\\Reddit\\\\2022\\\\RC_2022-10.zst',\n",
35
+ " 'i:\\\\NLP_Datasets\\\\Reddit\\\\2022\\\\RC_2022-11.zst',\n",
36
+ " 'i:\\\\NLP_Datasets\\\\Reddit\\\\2022\\\\RC_2022-12.zst']"
37
+ ]
38
+ },
39
+ "execution_count": 19,
40
+ "metadata": {},
41
+ "output_type": "execute_result"
42
+ }
43
+ ],
44
+ "source": [
45
+ "filepaths"
46
+ ]
47
+ },
48
+ {
49
+ "cell_type": "code",
50
+ "execution_count": 4,
51
+ "metadata": {},
52
+ "outputs": [],
53
+ "source": [
54
+ "# this is an example of loading and iterating over a single file\n",
55
+ "\n",
56
+ "import zstandard\n",
57
+ "import os\n",
58
+ "import json\n",
59
+ "import sys\n",
60
+ "from datetime import datetime\n",
61
+ "import logging.handlers\n",
62
+ "from pathlib import Path\n",
63
+ "import pandas as pd\n",
64
+ "\n",
65
+ "log = logging.getLogger(\"bot\")\n",
66
+ "log.setLevel(logging.DEBUG)\n",
67
+ "log.addHandler(logging.StreamHandler())\n",
68
+ "\n",
69
+ "\n",
70
+ "def read_and_decode(reader, chunk_size, max_window_size, previous_chunk=None, bytes_read=0):\n",
71
+ "\tchunk = reader.read(chunk_size)\n",
72
+ "\tbytes_read += chunk_size\n",
73
+ "\tif previous_chunk is not None:\n",
74
+ "\t\tchunk = previous_chunk + chunk\n",
75
+ "\ttry:\n",
76
+ "\t\treturn chunk.decode()\n",
77
+ "\texcept UnicodeDecodeError:\n",
78
+ "\t\tif bytes_read > max_window_size:\n",
79
+ "\t\t\traise UnicodeError(f\"Unable to decode frame after reading {bytes_read:,} bytes\")\n",
80
+ "\t\tlog.info(f\"Decoding error with {bytes_read:,} bytes, reading another chunk\")\n",
81
+ "\t\treturn read_and_decode(reader, chunk_size, max_window_size, chunk, bytes_read)\n",
82
+ "\n",
83
+ "\n",
84
+ "def read_lines_zst(file_name):\n",
85
+ "\twith open(file_name, 'rb') as file_handle:\n",
86
+ "\t\tbuffer = ''\n",
87
+ "\t\treader = zstandard.ZstdDecompressor(max_window_size=2**31).stream_reader(file_handle)\n",
88
+ "\t\t#reader.read(40000000000)\n",
89
+ "\t\twhile True:\n",
90
+ "\t\t\tchunk = read_and_decode(reader, 2**27, (2**29) * 2)\n",
91
+ "\n",
92
+ "\t\t\tif not chunk:\n",
93
+ "\t\t\t\tbreak\n",
94
+ "\t\t\tlines = (buffer + chunk).split(\"\\n\")\n",
95
+ "\n",
96
+ "\t\t\tfor line in lines[:-1]:\n",
97
+ "\t\t\t\tyield line\n",
98
+ "\n",
99
+ "\t\t\tbuffer = lines[-1]\n",
100
+ "\n",
101
+ "\t\treader.close()"
102
+ ]
103
+ },
104
+ {
105
+ "cell_type": "code",
106
+ "execution_count": 20,
107
+ "metadata": {},
108
+ "outputs": [
109
+ {
110
+ "name": "stdout",
111
+ "output_type": "stream",
112
+ "text": [
113
+ "1/12\n",
114
+ "1.0M / 10M\n",
115
+ "2.0M / 10M\n",
116
+ "3.0M / 10M\n",
117
+ "4.0M / 10M\n",
118
+ "5.0M / 10M\n",
119
+ "6.0M / 10M\n",
120
+ "7.0M / 10M\n",
121
+ "8.0M / 10M\n",
122
+ "9.0M / 10M\n",
123
+ "10.0M / 10M\n",
124
+ "trying to create_parquet\n",
125
+ "\n",
126
+ "1.0M / 10M\n",
127
+ "2.0M / 10M\n",
128
+ "3.0M / 10M\n",
129
+ "4.0M / 10M\n",
130
+ "5.0M / 10M\n",
131
+ "6.0M / 10M\n",
132
+ "7.0M / 10M\n",
133
+ "8.0M / 10M\n",
134
+ "9.0M / 10M\n",
135
+ "10.0M / 10M\n",
136
+ "trying to create_parquet\n",
137
+ "\n",
138
+ "1.0M / 10M\n",
139
+ "2.0M / 10M\n",
140
+ "3.0M / 10M\n",
141
+ "4.0M / 10M\n",
142
+ "5.0M / 10M\n",
143
+ "6.0M / 10M\n",
144
+ "7.0M / 10M\n",
145
+ "8.0M / 10M\n",
146
+ "9.0M / 10M\n",
147
+ "10.0M / 10M\n",
148
+ "trying to create_parquet\n",
149
+ "\n",
150
+ "1.0M / 10M\n",
151
+ "2.0M / 10M\n",
152
+ "3.0M / 10M\n",
153
+ "4.0M / 10M\n",
154
+ "5.0M / 10M\n",
155
+ "6.0M / 10M\n",
156
+ "7.0M / 10M\n",
157
+ "8.0M / 10M\n",
158
+ "9.0M / 10M\n",
159
+ "10.0M / 10M\n",
160
+ "trying to create_parquet\n",
161
+ "\n",
162
+ "1.0M / 10M\n",
163
+ "2.0M / 10M\n",
164
+ "3.0M / 10M\n",
165
+ "4.0M / 10M\n",
166
+ "5.0M / 10M\n",
167
+ "6.0M / 10M\n",
168
+ "7.0M / 10M\n",
169
+ "8.0M / 10M\n",
170
+ "9.0M / 10M\n",
171
+ "10.0M / 10M\n",
172
+ "trying to create_parquet\n",
173
+ "\n",
174
+ "1.0M / 10M\n",
175
+ "2.0M / 10M\n",
176
+ "3.0M / 10M\n",
177
+ "4.0M / 10M\n",
178
+ "5.0M / 10M\n",
179
+ "6.0M / 10M\n",
180
+ "7.0M / 10M\n",
181
+ "8.0M / 10M\n",
182
+ "9.0M / 10M\n",
183
+ "10.0M / 10M\n",
184
+ "trying to create_parquet\n",
185
+ "\n",
186
+ "1.0M / 10M\n",
187
+ "2.0M / 10M\n",
188
+ "3.0M / 10M\n",
189
+ "4.0M / 10M\n",
190
+ "5.0M / 10M\n",
191
+ "6.0M / 10M\n"
192
+ ]
193
+ },
194
+ {
195
+ "name": "stderr",
196
+ "output_type": "stream",
197
+ "text": [
198
+ "Decoding error with 134,217,728 bytes, reading another chunk\n",
199
+ "Decoding error with 134,217,728 bytes, reading another chunk\n"
200
+ ]
201
+ },
202
+ {
203
+ "name": "stdout",
204
+ "output_type": "stream",
205
+ "text": [
206
+ "7.0M / 10M\n",
207
+ "8.0M / 10M\n",
208
+ "9.0M / 10M\n",
209
+ "10.0M / 10M\n",
210
+ "trying to create_parquet\n",
211
+ "\n",
212
+ "1.0M / 10M\n",
213
+ "2.0M / 10M\n",
214
+ "3.0M / 10M\n",
215
+ "4.0M / 10M\n",
216
+ "5.0M / 10M\n",
217
+ "6.0M / 10M\n",
218
+ "7.0M / 10M\n",
219
+ "8.0M / 10M\n",
220
+ "9.0M / 10M\n",
221
+ "10.0M / 10M\n",
222
+ "trying to create_parquet\n",
223
+ "\n",
224
+ "1.0M / 10M\n",
225
+ "2.0M / 10M\n",
226
+ "3.0M / 10M\n",
227
+ "4.0M / 10M\n",
228
+ "5.0M / 10M\n",
229
+ "6.0M / 10M\n",
230
+ "7.0M / 10M\n",
231
+ "8.0M / 10M\n",
232
+ "9.0M / 10M\n",
233
+ "10.0M / 10M\n",
234
+ "trying to create_parquet\n",
235
+ "\n",
236
+ "1.0M / 10M\n",
237
+ "2.0M / 10M\n",
238
+ "3.0M / 10M\n",
239
+ "4.0M / 10M\n",
240
+ "5.0M / 10M\n",
241
+ "6.0M / 10M\n",
242
+ "7.0M / 10M\n",
243
+ "8.0M / 10M\n",
244
+ "9.0M / 10M\n",
245
+ "10.0M / 10M\n",
246
+ "trying to create_parquet\n",
247
+ "\n",
248
+ "1.0M / 10M\n",
249
+ "2.0M / 10M\n",
250
+ "3.0M / 10M\n",
251
+ "4.0M / 10M\n",
252
+ "5.0M / 10M\n",
253
+ "6.0M / 10M\n",
254
+ "7.0M / 10M\n",
255
+ "8.0M / 10M\n",
256
+ "9.0M / 10M\n",
257
+ "10.0M / 10M\n",
258
+ "trying to create_parquet\n",
259
+ "\n",
260
+ "1.0M / 10M\n",
261
+ "2.0M / 10M\n"
262
+ ]
263
+ },
264
+ {
265
+ "name": "stderr",
266
+ "output_type": "stream",
267
+ "text": [
268
+ "Decoding error with 134,217,728 bytes, reading another chunk\n",
269
+ "Decoding error with 134,217,728 bytes, reading another chunk\n"
270
+ ]
271
+ },
272
+ {
273
+ "name": "stdout",
274
+ "output_type": "stream",
275
+ "text": [
276
+ "3.0M / 10M\n",
277
+ "4.0M / 10M\n",
278
+ "5.0M / 10M\n",
279
+ "6.0M / 10M\n",
280
+ "7.0M / 10M\n",
281
+ "8.0M / 10M\n",
282
+ "9.0M / 10M\n",
283
+ "10.0M / 10M\n",
284
+ "trying to create_parquet\n",
285
+ "\n",
286
+ "1.0M / 10M\n",
287
+ "2.0M / 10M\n",
288
+ "3.0M / 10M\n",
289
+ "4.0M / 10M\n",
290
+ "5.0M / 10M\n",
291
+ "6.0M / 10M\n",
292
+ "7.0M / 10M\n",
293
+ "8.0M / 10M\n",
294
+ "9.0M / 10M\n",
295
+ "10.0M / 10M\n",
296
+ "trying to create_parquet\n",
297
+ "\n",
298
+ "1.0M / 10M\n",
299
+ "2.0M / 10M\n",
300
+ "3.0M / 10M\n",
301
+ "4.0M / 10M\n",
302
+ "5.0M / 10M\n",
303
+ "6.0M / 10M\n",
304
+ "7.0M / 10M\n",
305
+ "8.0M / 10M\n",
306
+ "9.0M / 10M\n",
307
+ "10.0M / 10M\n",
308
+ "trying to create_parquet\n",
309
+ "\n",
310
+ "1.0M / 10M\n",
311
+ "2.0M / 10M\n",
312
+ "3.0M / 10M\n",
313
+ "4.0M / 10M\n",
314
+ "5.0M / 10M\n",
315
+ "6.0M / 10M\n",
316
+ "7.0M / 10M\n",
317
+ "8.0M / 10M\n",
318
+ "9.0M / 10M\n",
319
+ "10.0M / 10M\n",
320
+ "trying to create_parquet\n",
321
+ "\n",
322
+ "1.0M / 10M\n",
323
+ "2.0M / 10M\n",
324
+ "3.0M / 10M\n",
325
+ "4.0M / 10M\n",
326
+ "5.0M / 10M\n",
327
+ "6.0M / 10M\n",
328
+ "7.0M / 10M\n",
329
+ "8.0M / 10M\n",
330
+ "9.0M / 10M\n",
331
+ "10.0M / 10M\n",
332
+ "trying to create_parquet\n",
333
+ "\n",
334
+ "1.0M / 10M\n",
335
+ "2.0M / 10M\n",
336
+ "3.0M / 10M\n",
337
+ "4.0M / 10M\n",
338
+ "5.0M / 10M\n",
339
+ "6.0M / 10M\n",
340
+ "7.0M / 10M\n",
341
+ "8.0M / 10M\n",
342
+ "9.0M / 10M\n",
343
+ "10.0M / 10M\n",
344
+ "trying to create_parquet\n",
345
+ "\n",
346
+ "1.0M / 10M\n",
347
+ "2.0M / 10M\n",
348
+ "3.0M / 10M\n",
349
+ "2/12\n",
350
+ "1.0M / 10M\n",
351
+ "2.0M / 10M\n",
352
+ "3.0M / 10M\n",
353
+ "4.0M / 10M\n",
354
+ "5.0M / 10M\n",
355
+ "6.0M / 10M\n",
356
+ "7.0M / 10M\n"
357
+ ]
358
+ },
359
+ {
360
+ "name": "stderr",
361
+ "output_type": "stream",
362
+ "text": [
363
+ "Decoding error with 134,217,728 bytes, reading another chunk\n",
364
+ "Decoding error with 134,217,728 bytes, reading another chunk\n"
365
+ ]
366
+ },
367
+ {
368
+ "name": "stdout",
369
+ "output_type": "stream",
370
+ "text": [
371
+ "8.0M / 10M\n",
372
+ "9.0M / 10M\n",
373
+ "10.0M / 10M\n",
374
+ "trying to create_parquet\n",
375
+ "\n",
376
+ "1.0M / 10M\n",
377
+ "2.0M / 10M\n",
378
+ "3.0M / 10M\n",
379
+ "4.0M / 10M\n",
380
+ "5.0M / 10M\n",
381
+ "6.0M / 10M\n",
382
+ "7.0M / 10M\n",
383
+ "8.0M / 10M\n",
384
+ "9.0M / 10M\n",
385
+ "10.0M / 10M\n",
386
+ "trying to create_parquet\n",
387
+ "\n",
388
+ "1.0M / 10M\n",
389
+ "2.0M / 10M\n",
390
+ "3.0M / 10M\n",
391
+ "4.0M / 10M\n",
392
+ "5.0M / 10M\n",
393
+ "6.0M / 10M\n"
394
+ ]
395
+ },
396
+ {
397
+ "name": "stderr",
398
+ "output_type": "stream",
399
+ "text": [
400
+ "Decoding error with 134,217,728 bytes, reading another chunk\n",
401
+ "Decoding error with 134,217,728 bytes, reading another chunk\n"
402
+ ]
403
+ },
404
+ {
405
+ "name": "stdout",
406
+ "output_type": "stream",
407
+ "text": [
408
+ "7.0M / 10M\n",
409
+ "8.0M / 10M\n",
410
+ "9.0M / 10M\n",
411
+ "10.0M / 10M\n",
412
+ "trying to create_parquet\n",
413
+ "\n",
414
+ "1.0M / 10M\n",
415
+ "2.0M / 10M\n",
416
+ "3.0M / 10M\n",
417
+ "4.0M / 10M\n",
418
+ "5.0M / 10M\n",
419
+ "6.0M / 10M\n",
420
+ "7.0M / 10M\n",
421
+ "8.0M / 10M\n",
422
+ "9.0M / 10M\n",
423
+ "10.0M / 10M\n",
424
+ "trying to create_parquet\n",
425
+ "\n",
426
+ "1.0M / 10M\n",
427
+ "2.0M / 10M\n",
428
+ "3.0M / 10M\n",
429
+ "4.0M / 10M\n",
430
+ "5.0M / 10M\n",
431
+ "6.0M / 10M\n",
432
+ "7.0M / 10M\n",
433
+ "8.0M / 10M\n",
434
+ "9.0M / 10M\n",
435
+ "10.0M / 10M\n",
436
+ "trying to create_parquet\n",
437
+ "\n",
438
+ "1.0M / 10M\n",
439
+ "2.0M / 10M\n",
440
+ "3.0M / 10M\n",
441
+ "4.0M / 10M\n",
442
+ "5.0M / 10M\n",
443
+ "6.0M / 10M\n",
444
+ "7.0M / 10M\n",
445
+ "8.0M / 10M\n",
446
+ "9.0M / 10M\n",
447
+ "10.0M / 10M\n",
448
+ "trying to create_parquet\n",
449
+ "\n",
450
+ "1.0M / 10M\n",
451
+ "2.0M / 10M\n",
452
+ "3.0M / 10M\n",
453
+ "4.0M / 10M\n",
454
+ "5.0M / 10M\n",
455
+ "6.0M / 10M\n",
456
+ "7.0M / 10M\n",
457
+ "8.0M / 10M\n",
458
+ "9.0M / 10M\n",
459
+ "10.0M / 10M\n",
460
+ "trying to create_parquet\n",
461
+ "\n",
462
+ "1.0M / 10M\n",
463
+ "2.0M / 10M\n",
464
+ "3.0M / 10M\n",
465
+ "4.0M / 10M\n",
466
+ "5.0M / 10M\n",
467
+ "6.0M / 10M\n",
468
+ "7.0M / 10M\n",
469
+ "8.0M / 10M\n",
470
+ "9.0M / 10M\n",
471
+ "10.0M / 10M\n",
472
+ "trying to create_parquet\n",
473
+ "\n",
474
+ "1.0M / 10M\n",
475
+ "2.0M / 10M\n"
476
+ ]
477
+ },
478
+ {
479
+ "name": "stderr",
480
+ "output_type": "stream",
481
+ "text": [
482
+ "Decoding error with 134,217,728 bytes, reading another chunk\n",
483
+ "Decoding error with 134,217,728 bytes, reading another chunk\n"
484
+ ]
485
+ },
486
+ {
487
+ "name": "stdout",
488
+ "output_type": "stream",
489
+ "text": [
490
+ "3.0M / 10M\n",
491
+ "4.0M / 10M\n",
492
+ "5.0M / 10M\n",
493
+ "6.0M / 10M\n"
494
+ ]
495
+ },
496
+ {
497
+ "name": "stderr",
498
+ "output_type": "stream",
499
+ "text": [
500
+ "Decoding error with 134,217,728 bytes, reading another chunk\n",
501
+ "Decoding error with 134,217,728 bytes, reading another chunk\n"
502
+ ]
503
+ },
504
+ {
505
+ "name": "stdout",
506
+ "output_type": "stream",
507
+ "text": [
508
+ "7.0M / 10M\n",
509
+ "8.0M / 10M\n",
510
+ "9.0M / 10M\n",
511
+ "10.0M / 10M\n",
512
+ "trying to create_parquet\n",
513
+ "\n",
514
+ "1.0M / 10M\n",
515
+ "2.0M / 10M\n",
516
+ "3.0M / 10M\n",
517
+ "4.0M / 10M\n",
518
+ "5.0M / 10M\n",
519
+ "6.0M / 10M\n",
520
+ "7.0M / 10M\n",
521
+ "8.0M / 10M\n",
522
+ "9.0M / 10M\n",
523
+ "10.0M / 10M\n",
524
+ "trying to create_parquet\n",
525
+ "\n",
526
+ "1.0M / 10M\n",
527
+ "2.0M / 10M\n",
528
+ "3.0M / 10M\n",
529
+ "4.0M / 10M\n",
530
+ "5.0M / 10M\n",
531
+ "6.0M / 10M\n",
532
+ "7.0M / 10M\n",
533
+ "8.0M / 10M\n",
534
+ "9.0M / 10M\n",
535
+ "10.0M / 10M\n",
536
+ "trying to create_parquet\n",
537
+ "\n",
538
+ "1.0M / 10M\n",
539
+ "2.0M / 10M\n",
540
+ "3.0M / 10M\n",
541
+ "4.0M / 10M\n"
542
+ ]
543
+ },
544
+ {
545
+ "name": "stderr",
546
+ "output_type": "stream",
547
+ "text": [
548
+ "Decoding error with 134,217,728 bytes, reading another chunk\n",
549
+ "Decoding error with 134,217,728 bytes, reading another chunk\n"
550
+ ]
551
+ },
552
+ {
553
+ "name": "stdout",
554
+ "output_type": "stream",
555
+ "text": [
556
+ "5.0M / 10M\n",
557
+ "6.0M / 10M\n",
558
+ "7.0M / 10M\n",
559
+ "8.0M / 10M\n",
560
+ "9.0M / 10M\n",
561
+ "10.0M / 10M\n",
562
+ "trying to create_parquet\n",
563
+ "\n",
564
+ "1.0M / 10M\n",
565
+ "2.0M / 10M\n",
566
+ "3.0M / 10M\n",
567
+ "4.0M / 10M\n",
568
+ "5.0M / 10M\n",
569
+ "6.0M / 10M\n",
570
+ "7.0M / 10M\n",
571
+ "8.0M / 10M\n",
572
+ "9.0M / 10M\n",
573
+ "10.0M / 10M\n",
574
+ "trying to create_parquet\n",
575
+ "\n",
576
+ "1.0M / 10M\n",
577
+ "2.0M / 10M\n",
578
+ "3.0M / 10M\n",
579
+ "4.0M / 10M\n",
580
+ "5.0M / 10M\n",
581
+ "6.0M / 10M\n",
582
+ "7.0M / 10M\n",
583
+ "8.0M / 10M\n",
584
+ "9.0M / 10M\n",
585
+ "10.0M / 10M\n",
586
+ "trying to create_parquet\n",
587
+ "\n",
588
+ "1.0M / 10M\n",
589
+ "2.0M / 10M\n",
590
+ "3.0M / 10M\n",
591
+ "4.0M / 10M\n",
592
+ "5.0M / 10M\n",
593
+ "6.0M / 10M\n",
594
+ "7.0M / 10M\n",
595
+ "8.0M / 10M\n",
596
+ "3/12\n",
597
+ "1.0M / 10M\n",
598
+ "2.0M / 10M\n",
599
+ "3.0M / 10M\n",
600
+ "4.0M / 10M\n",
601
+ "5.0M / 10M\n",
602
+ "6.0M / 10M\n",
603
+ "7.0M / 10M\n",
604
+ "8.0M / 10M\n"
605
+ ]
606
+ },
607
+ {
608
+ "name": "stderr",
609
+ "output_type": "stream",
610
+ "text": [
611
+ "Decoding error with 134,217,728 bytes, reading another chunk\n",
612
+ "Decoding error with 134,217,728 bytes, reading another chunk\n"
613
+ ]
614
+ },
615
+ {
616
+ "name": "stdout",
617
+ "output_type": "stream",
618
+ "text": [
619
+ "9.0M / 10M\n",
620
+ "10.0M / 10M\n",
621
+ "trying to create_parquet\n",
622
+ "\n",
623
+ "1.0M / 10M\n",
624
+ "2.0M / 10M\n",
625
+ "3.0M / 10M\n",
626
+ "4.0M / 10M\n",
627
+ "5.0M / 10M\n",
628
+ "6.0M / 10M\n",
629
+ "7.0M / 10M\n",
630
+ "8.0M / 10M\n",
631
+ "9.0M / 10M\n",
632
+ "10.0M / 10M\n",
633
+ "trying to create_parquet\n",
634
+ "\n",
635
+ "1.0M / 10M\n",
636
+ "2.0M / 10M\n",
637
+ "3.0M / 10M\n",
638
+ "4.0M / 10M\n",
639
+ "5.0M / 10M\n",
640
+ "6.0M / 10M\n",
641
+ "7.0M / 10M\n",
642
+ "8.0M / 10M\n",
643
+ "9.0M / 10M\n",
644
+ "10.0M / 10M\n",
645
+ "trying to create_parquet\n",
646
+ "\n",
647
+ "1.0M / 10M\n",
648
+ "2.0M / 10M\n",
649
+ "3.0M / 10M\n",
650
+ "4.0M / 10M\n",
651
+ "5.0M / 10M\n",
652
+ "6.0M / 10M\n",
653
+ "7.0M / 10M\n",
654
+ "8.0M / 10M\n",
655
+ "9.0M / 10M\n",
656
+ "10.0M / 10M\n",
657
+ "trying to create_parquet\n",
658
+ "\n",
659
+ "1.0M / 10M\n",
660
+ "2.0M / 10M\n",
661
+ "3.0M / 10M\n",
662
+ "4.0M / 10M\n",
663
+ "5.0M / 10M\n",
664
+ "6.0M / 10M\n",
665
+ "7.0M / 10M\n",
666
+ "8.0M / 10M\n",
667
+ "9.0M / 10M\n",
668
+ "10.0M / 10M\n",
669
+ "trying to create_parquet\n",
670
+ "\n",
671
+ "1.0M / 10M\n",
672
+ "2.0M / 10M\n",
673
+ "3.0M / 10M\n",
674
+ "4.0M / 10M\n",
675
+ "5.0M / 10M\n",
676
+ "6.0M / 10M\n",
677
+ "7.0M / 10M\n",
678
+ "8.0M / 10M\n",
679
+ "9.0M / 10M\n",
680
+ "10.0M / 10M\n",
681
+ "trying to create_parquet\n",
682
+ "\n",
683
+ "1.0M / 10M\n",
684
+ "2.0M / 10M\n",
685
+ "3.0M / 10M\n",
686
+ "4.0M / 10M\n",
687
+ "5.0M / 10M\n",
688
+ "6.0M / 10M\n",
689
+ "7.0M / 10M\n",
690
+ "8.0M / 10M\n",
691
+ "9.0M / 10M\n",
692
+ "10.0M / 10M\n",
693
+ "trying to create_parquet\n",
694
+ "\n"
695
+ ]
696
+ },
697
+ {
698
+ "name": "stderr",
699
+ "output_type": "stream",
700
+ "text": [
701
+ "Decoding error with 134,217,728 bytes, reading another chunk\n",
702
+ "Decoding error with 134,217,728 bytes, reading another chunk\n"
703
+ ]
704
+ },
705
+ {
706
+ "name": "stdout",
707
+ "output_type": "stream",
708
+ "text": [
709
+ "1.0M / 10M\n",
710
+ "2.0M / 10M\n",
711
+ "3.0M / 10M\n"
712
+ ]
713
+ },
714
+ {
715
+ "name": "stderr",
716
+ "output_type": "stream",
717
+ "text": [
718
+ "Decoding error with 134,217,728 bytes, reading another chunk\n",
719
+ "Decoding error with 134,217,728 bytes, reading another chunk\n"
720
+ ]
721
+ },
722
+ {
723
+ "name": "stdout",
724
+ "output_type": "stream",
725
+ "text": [
726
+ "4.0M / 10M\n",
727
+ "5.0M / 10M\n",
728
+ "6.0M / 10M\n",
729
+ "7.0M / 10M\n",
730
+ "8.0M / 10M\n",
731
+ "9.0M / 10M\n",
732
+ "10.0M / 10M\n",
733
+ "trying to create_parquet\n",
734
+ "\n",
735
+ "1.0M / 10M\n",
736
+ "2.0M / 10M\n",
737
+ "3.0M / 10M\n",
738
+ "4.0M / 10M\n",
739
+ "5.0M / 10M\n",
740
+ "6.0M / 10M\n",
741
+ "7.0M / 10M\n",
742
+ "8.0M / 10M\n",
743
+ "9.0M / 10M\n",
744
+ "10.0M / 10M\n",
745
+ "trying to create_parquet\n",
746
+ "\n",
747
+ "1.0M / 10M\n",
748
+ "2.0M / 10M\n",
749
+ "3.0M / 10M\n",
750
+ "4.0M / 10M\n",
751
+ "5.0M / 10M\n",
752
+ "6.0M / 10M\n",
753
+ "7.0M / 10M\n",
754
+ "8.0M / 10M\n",
755
+ "9.0M / 10M\n",
756
+ "10.0M / 10M\n",
757
+ "trying to create_parquet\n",
758
+ "\n",
759
+ "1.0M / 10M\n",
760
+ "2.0M / 10M\n",
761
+ "3.0M / 10M\n"
762
+ ]
763
+ },
764
+ {
765
+ "name": "stderr",
766
+ "output_type": "stream",
767
+ "text": [
768
+ "Decoding error with 134,217,728 bytes, reading another chunk\n",
769
+ "Decoding error with 134,217,728 bytes, reading another chunk\n"
770
+ ]
771
+ },
772
+ {
773
+ "name": "stdout",
774
+ "output_type": "stream",
775
+ "text": [
776
+ "4.0M / 10M\n",
777
+ "5.0M / 10M\n",
778
+ "6.0M / 10M\n",
779
+ "7.0M / 10M\n",
780
+ "8.0M / 10M\n",
781
+ "9.0M / 10M\n",
782
+ "10.0M / 10M\n",
783
+ "trying to create_parquet\n",
784
+ "\n",
785
+ "1.0M / 10M\n",
786
+ "2.0M / 10M\n",
787
+ "3.0M / 10M\n",
788
+ "4.0M / 10M\n",
789
+ "5.0M / 10M\n",
790
+ "6.0M / 10M\n",
791
+ "7.0M / 10M\n",
792
+ "8.0M / 10M\n",
793
+ "9.0M / 10M\n",
794
+ "10.0M / 10M\n",
795
+ "trying to create_parquet\n",
796
+ "\n",
797
+ "1.0M / 10M\n",
798
+ "2.0M / 10M\n",
799
+ "3.0M / 10M\n",
800
+ "4.0M / 10M\n",
801
+ "5.0M / 10M\n",
802
+ "6.0M / 10M\n",
803
+ "7.0M / 10M\n",
804
+ "8.0M / 10M\n",
805
+ "9.0M / 10M\n",
806
+ "10.0M / 10M\n",
807
+ "trying to create_parquet\n",
808
+ "\n",
809
+ "1.0M / 10M\n",
810
+ "2.0M / 10M\n",
811
+ "3.0M / 10M\n",
812
+ "4.0M / 10M\n",
813
+ "5.0M / 10M\n"
814
+ ]
815
+ },
816
+ {
817
+ "name": "stderr",
818
+ "output_type": "stream",
819
+ "text": [
820
+ "Decoding error with 134,217,728 bytes, reading another chunk\n",
821
+ "Decoding error with 134,217,728 bytes, reading another chunk\n"
822
+ ]
823
+ },
824
+ {
825
+ "name": "stdout",
826
+ "output_type": "stream",
827
+ "text": [
828
+ "6.0M / 10M\n",
829
+ "7.0M / 10M\n",
830
+ "8.0M / 10M\n",
831
+ "9.0M / 10M\n",
832
+ "10.0M / 10M\n",
833
+ "trying to create_parquet\n",
834
+ "\n",
835
+ "1.0M / 10M\n",
836
+ "2.0M / 10M\n",
837
+ "3.0M / 10M\n",
838
+ "4.0M / 10M\n",
839
+ "5.0M / 10M\n",
840
+ "6.0M / 10M\n",
841
+ "7.0M / 10M\n",
842
+ "8.0M / 10M\n",
843
+ "9.0M / 10M\n",
844
+ "10.0M / 10M\n",
845
+ "trying to create_parquet\n",
846
+ "\n",
847
+ "1.0M / 10M\n",
848
+ "2.0M / 10M\n",
849
+ "3.0M / 10M\n",
850
+ "4.0M / 10M\n",
851
+ "5.0M / 10M\n",
852
+ "6.0M / 10M\n",
853
+ "7.0M / 10M\n",
854
+ "8.0M / 10M\n",
855
+ "9.0M / 10M\n",
856
+ "10.0M / 10M\n",
857
+ "trying to create_parquet\n",
858
+ "\n",
859
+ "1.0M / 10M\n",
860
+ "2.0M / 10M\n",
861
+ "4/12\n",
862
+ "1.0M / 10M\n",
863
+ "2.0M / 10M\n",
864
+ "3.0M / 10M\n",
865
+ "4.0M / 10M\n",
866
+ "5.0M / 10M\n",
867
+ "6.0M / 10M\n",
868
+ "7.0M / 10M\n",
869
+ "8.0M / 10M\n",
870
+ "9.0M / 10M\n",
871
+ "10.0M / 10M\n",
872
+ "trying to create_parquet\n",
873
+ "\n",
874
+ "1.0M / 10M\n",
875
+ "2.0M / 10M\n",
876
+ "3.0M / 10M\n",
877
+ "4.0M / 10M\n",
878
+ "5.0M / 10M\n",
879
+ "6.0M / 10M\n",
880
+ "7.0M / 10M\n",
881
+ "8.0M / 10M\n",
882
+ "9.0M / 10M\n",
883
+ "10.0M / 10M\n",
884
+ "trying to create_parquet\n",
885
+ "\n",
886
+ "1.0M / 10M\n",
887
+ "2.0M / 10M\n",
888
+ "3.0M / 10M\n",
889
+ "4.0M / 10M\n",
890
+ "5.0M / 10M\n",
891
+ "6.0M / 10M\n",
892
+ "7.0M / 10M\n"
893
+ ]
894
+ },
895
+ {
896
+ "name": "stderr",
897
+ "output_type": "stream",
898
+ "text": [
899
+ "Decoding error with 134,217,728 bytes, reading another chunk\n",
900
+ "Decoding error with 134,217,728 bytes, reading another chunk\n"
901
+ ]
902
+ },
903
+ {
904
+ "name": "stdout",
905
+ "output_type": "stream",
906
+ "text": [
907
+ "8.0M / 10M\n",
908
+ "9.0M / 10M\n",
909
+ "10.0M / 10M\n",
910
+ "trying to create_parquet\n",
911
+ "\n",
912
+ "1.0M / 10M\n",
913
+ "2.0M / 10M\n",
914
+ "3.0M / 10M\n",
915
+ "4.0M / 10M\n",
916
+ "5.0M / 10M\n",
917
+ "6.0M / 10M\n",
918
+ "7.0M / 10M\n",
919
+ "8.0M / 10M\n",
920
+ "9.0M / 10M\n",
921
+ "10.0M / 10M\n",
922
+ "trying to create_parquet\n",
923
+ "\n",
924
+ "1.0M / 10M\n",
925
+ "2.0M / 10M\n",
926
+ "3.0M / 10M\n",
927
+ "4.0M / 10M\n",
928
+ "5.0M / 10M\n",
929
+ "6.0M / 10M\n",
930
+ "7.0M / 10M\n",
931
+ "8.0M / 10M\n",
932
+ "9.0M / 10M\n",
933
+ "10.0M / 10M\n",
934
+ "trying to create_parquet\n",
935
+ "\n",
936
+ "1.0M / 10M\n",
937
+ "2.0M / 10M\n",
938
+ "3.0M / 10M\n",
939
+ "4.0M / 10M\n",
940
+ "5.0M / 10M\n",
941
+ "6.0M / 10M\n",
942
+ "7.0M / 10M\n"
943
+ ]
944
+ },
945
+ {
946
+ "name": "stderr",
947
+ "output_type": "stream",
948
+ "text": [
949
+ "Decoding error with 134,217,728 bytes, reading another chunk\n",
950
+ "Decoding error with 134,217,728 bytes, reading another chunk\n"
951
+ ]
952
+ },
953
+ {
954
+ "name": "stdout",
955
+ "output_type": "stream",
956
+ "text": [
957
+ "8.0M / 10M\n",
958
+ "9.0M / 10M\n",
959
+ "10.0M / 10M\n",
960
+ "trying to create_parquet\n",
961
+ "\n",
962
+ "1.0M / 10M\n",
963
+ "2.0M / 10M\n",
964
+ "3.0M / 10M\n",
965
+ "4.0M / 10M\n",
966
+ "5.0M / 10M\n",
967
+ "6.0M / 10M\n",
968
+ "7.0M / 10M\n",
969
+ "8.0M / 10M\n",
970
+ "9.0M / 10M\n",
971
+ "10.0M / 10M\n",
972
+ "trying to create_parquet\n",
973
+ "\n",
974
+ "1.0M / 10M\n",
975
+ "2.0M / 10M\n"
976
+ ]
977
+ },
978
+ {
979
+ "name": "stderr",
980
+ "output_type": "stream",
981
+ "text": [
982
+ "Decoding error with 134,217,728 bytes, reading another chunk\n",
983
+ "Decoding error with 134,217,728 bytes, reading another chunk\n"
984
+ ]
985
+ },
986
+ {
987
+ "name": "stdout",
988
+ "output_type": "stream",
989
+ "text": [
990
+ "3.0M / 10M\n",
991
+ "4.0M / 10M\n",
992
+ "5.0M / 10M\n",
993
+ "6.0M / 10M\n",
994
+ "7.0M / 10M\n",
995
+ "8.0M / 10M\n",
996
+ "9.0M / 10M\n",
997
+ "10.0M / 10M\n",
998
+ "trying to create_parquet\n",
999
+ "\n",
1000
+ "1.0M / 10M\n",
1001
+ "2.0M / 10M\n"
1002
+ ]
1003
+ },
1004
+ {
1005
+ "name": "stderr",
1006
+ "output_type": "stream",
1007
+ "text": [
1008
+ "Decoding error with 134,217,728 bytes, reading another chunk\n",
1009
+ "Decoding error with 134,217,728 bytes, reading another chunk\n"
1010
+ ]
1011
+ },
1012
+ {
1013
+ "name": "stdout",
1014
+ "output_type": "stream",
1015
+ "text": [
1016
+ "3.0M / 10M\n",
1017
+ "4.0M / 10M\n",
1018
+ "5.0M / 10M\n",
1019
+ "6.0M / 10M\n",
1020
+ "7.0M / 10M\n",
1021
+ "8.0M / 10M\n",
1022
+ "9.0M / 10M\n",
1023
+ "10.0M / 10M\n",
1024
+ "trying to create_parquet\n",
1025
+ "\n",
1026
+ "1.0M / 10M\n",
1027
+ "2.0M / 10M\n",
1028
+ "3.0M / 10M\n",
1029
+ "4.0M / 10M\n",
1030
+ "5.0M / 10M\n",
1031
+ "6.0M / 10M\n",
1032
+ "7.0M / 10M\n",
1033
+ "8.0M / 10M\n",
1034
+ "9.0M / 10M\n",
1035
+ "10.0M / 10M\n",
1036
+ "trying to create_parquet\n",
1037
+ "\n",
1038
+ "1.0M / 10M\n",
1039
+ "2.0M / 10M\n"
1040
+ ]
1041
+ },
1042
+ {
1043
+ "name": "stderr",
1044
+ "output_type": "stream",
1045
+ "text": [
1046
+ "Decoding error with 134,217,728 bytes, reading another chunk\n",
1047
+ "Decoding error with 134,217,728 bytes, reading another chunk\n"
1048
+ ]
1049
+ },
1050
+ {
1051
+ "name": "stdout",
1052
+ "output_type": "stream",
1053
+ "text": [
1054
+ "3.0M / 10M\n",
1055
+ "4.0M / 10M\n",
1056
+ "5.0M / 10M\n",
1057
+ "6.0M / 10M\n",
1058
+ "7.0M / 10M\n",
1059
+ "8.0M / 10M\n",
1060
+ "9.0M / 10M\n",
1061
+ "10.0M / 10M\n",
1062
+ "trying to create_parquet\n",
1063
+ "\n",
1064
+ "1.0M / 10M\n",
1065
+ "2.0M / 10M\n",
1066
+ "3.0M / 10M\n",
1067
+ "4.0M / 10M\n",
1068
+ "5.0M / 10M\n",
1069
+ "6.0M / 10M\n",
1070
+ "7.0M / 10M\n",
1071
+ "8.0M / 10M\n",
1072
+ "9.0M / 10M\n",
1073
+ "10.0M / 10M\n",
1074
+ "trying to create_parquet\n",
1075
+ "\n",
1076
+ "1.0M / 10M\n",
1077
+ "2.0M / 10M\n",
1078
+ "3.0M / 10M\n",
1079
+ "4.0M / 10M\n",
1080
+ "5.0M / 10M\n",
1081
+ "6.0M / 10M\n",
1082
+ "7.0M / 10M\n",
1083
+ "8.0M / 10M\n",
1084
+ "9.0M / 10M\n",
1085
+ "10.0M / 10M\n",
1086
+ "trying to create_parquet\n",
1087
+ "\n",
1088
+ "1.0M / 10M\n",
1089
+ "2.0M / 10M\n",
1090
+ "3.0M / 10M\n",
1091
+ "4.0M / 10M\n",
1092
+ "5.0M / 10M\n",
1093
+ "6.0M / 10M\n",
1094
+ "7.0M / 10M\n",
1095
+ "8.0M / 10M\n",
1096
+ "9.0M / 10M\n",
1097
+ "10.0M / 10M\n",
1098
+ "trying to create_parquet\n",
1099
+ "\n",
1100
+ "1.0M / 10M\n",
1101
+ "2.0M / 10M\n",
1102
+ "3.0M / 10M\n",
1103
+ "4.0M / 10M\n",
1104
+ "5.0M / 10M\n",
1105
+ "6.0M / 10M\n",
1106
+ "7.0M / 10M\n",
1107
+ "8.0M / 10M\n",
1108
+ "9.0M / 10M\n",
1109
+ "10.0M / 10M\n",
1110
+ "trying to create_parquet\n",
1111
+ "\n",
1112
+ "1.0M / 10M\n",
1113
+ "2.0M / 10M\n",
1114
+ "3.0M / 10M\n",
1115
+ "4.0M / 10M\n",
1116
+ "5.0M / 10M\n",
1117
+ "6.0M / 10M\n",
1118
+ "7.0M / 10M\n",
1119
+ "5/12\n",
1120
+ "1.0M / 10M\n",
1121
+ "2.0M / 10M\n",
1122
+ "3.0M / 10M\n",
1123
+ "4.0M / 10M\n",
1124
+ "5.0M / 10M\n",
1125
+ "6.0M / 10M\n",
1126
+ "7.0M / 10M\n",
1127
+ "8.0M / 10M\n",
1128
+ "9.0M / 10M\n",
1129
+ "10.0M / 10M\n",
1130
+ "trying to create_parquet\n",
1131
+ "\n",
1132
+ "1.0M / 10M\n",
1133
+ "2.0M / 10M\n",
1134
+ "3.0M / 10M\n",
1135
+ "4.0M / 10M\n",
1136
+ "5.0M / 10M\n",
1137
+ "6.0M / 10M\n",
1138
+ "7.0M / 10M\n",
1139
+ "8.0M / 10M\n",
1140
+ "9.0M / 10M\n",
1141
+ "10.0M / 10M\n",
1142
+ "trying to create_parquet\n",
1143
+ "\n",
1144
+ "1.0M / 10M\n",
1145
+ "2.0M / 10M\n",
1146
+ "3.0M / 10M\n"
1147
+ ]
1148
+ },
1149
+ {
1150
+ "name": "stderr",
1151
+ "output_type": "stream",
1152
+ "text": [
1153
+ "Decoding error with 134,217,728 bytes, reading another chunk\n",
1154
+ "Decoding error with 134,217,728 bytes, reading another chunk\n"
1155
+ ]
1156
+ },
1157
+ {
1158
+ "name": "stdout",
1159
+ "output_type": "stream",
1160
+ "text": [
1161
+ "4.0M / 10M\n",
1162
+ "5.0M / 10M\n",
1163
+ "6.0M / 10M\n",
1164
+ "7.0M / 10M\n",
1165
+ "8.0M / 10M\n",
1166
+ "9.0M / 10M\n",
1167
+ "10.0M / 10M\n",
1168
+ "trying to create_parquet\n",
1169
+ "\n",
1170
+ "1.0M / 10M\n",
1171
+ "2.0M / 10M\n",
1172
+ "3.0M / 10M\n",
1173
+ "4.0M / 10M\n",
1174
+ "5.0M / 10M\n",
1175
+ "6.0M / 10M\n",
1176
+ "7.0M / 10M\n",
1177
+ "8.0M / 10M\n",
1178
+ "9.0M / 10M\n",
1179
+ "10.0M / 10M\n",
1180
+ "trying to create_parquet\n",
1181
+ "\n",
1182
+ "1.0M / 10M\n",
1183
+ "2.0M / 10M\n",
1184
+ "3.0M / 10M\n",
1185
+ "4.0M / 10M\n",
1186
+ "5.0M / 10M\n",
1187
+ "6.0M / 10M\n"
1188
+ ]
1189
+ },
1190
+ {
1191
+ "name": "stderr",
1192
+ "output_type": "stream",
1193
+ "text": [
1194
+ "Decoding error with 134,217,728 bytes, reading another chunk\n",
1195
+ "Decoding error with 134,217,728 bytes, reading another chunk\n"
1196
+ ]
1197
+ },
1198
+ {
1199
+ "name": "stdout",
1200
+ "output_type": "stream",
1201
+ "text": [
1202
+ "7.0M / 10M\n",
1203
+ "8.0M / 10M\n",
1204
+ "9.0M / 10M\n",
1205
+ "10.0M / 10M\n",
1206
+ "trying to create_parquet\n",
1207
+ "\n",
1208
+ "1.0M / 10M\n",
1209
+ "2.0M / 10M\n",
1210
+ "3.0M / 10M\n",
1211
+ "4.0M / 10M\n",
1212
+ "5.0M / 10M\n",
1213
+ "6.0M / 10M\n",
1214
+ "7.0M / 10M\n",
1215
+ "8.0M / 10M\n",
1216
+ "9.0M / 10M\n",
1217
+ "10.0M / 10M\n",
1218
+ "trying to create_parquet\n",
1219
+ "\n",
1220
+ "1.0M / 10M\n",
1221
+ "2.0M / 10M\n",
1222
+ "3.0M / 10M\n",
1223
+ "4.0M / 10M\n",
1224
+ "5.0M / 10M\n",
1225
+ "6.0M / 10M\n",
1226
+ "7.0M / 10M\n",
1227
+ "8.0M / 10M\n",
1228
+ "9.0M / 10M\n",
1229
+ "10.0M / 10M\n",
1230
+ "trying to create_parquet\n",
1231
+ "\n",
1232
+ "1.0M / 10M\n",
1233
+ "2.0M / 10M\n",
1234
+ "3.0M / 10M\n",
1235
+ "4.0M / 10M\n",
1236
+ "5.0M / 10M\n",
1237
+ "6.0M / 10M\n",
1238
+ "7.0M / 10M\n",
1239
+ "8.0M / 10M\n",
1240
+ "9.0M / 10M\n",
1241
+ "10.0M / 10M\n",
1242
+ "trying to create_parquet\n",
1243
+ "\n",
1244
+ "1.0M / 10M\n",
1245
+ "2.0M / 10M\n",
1246
+ "3.0M / 10M\n",
1247
+ "4.0M / 10M\n",
1248
+ "5.0M / 10M\n",
1249
+ "6.0M / 10M\n",
1250
+ "7.0M / 10M\n",
1251
+ "8.0M / 10M\n",
1252
+ "9.0M / 10M\n",
1253
+ "10.0M / 10M\n",
1254
+ "trying to create_parquet\n",
1255
+ "\n",
1256
+ "1.0M / 10M\n",
1257
+ "2.0M / 10M\n",
1258
+ "3.0M / 10M\n",
1259
+ "4.0M / 10M\n",
1260
+ "5.0M / 10M\n",
1261
+ "6.0M / 10M\n",
1262
+ "7.0M / 10M\n",
1263
+ "8.0M / 10M\n",
1264
+ "9.0M / 10M\n",
1265
+ "10.0M / 10M\n",
1266
+ "trying to create_parquet\n",
1267
+ "\n",
1268
+ "1.0M / 10M\n",
1269
+ "2.0M / 10M\n",
1270
+ "3.0M / 10M\n",
1271
+ "4.0M / 10M\n",
1272
+ "5.0M / 10M\n",
1273
+ "6.0M / 10M\n",
1274
+ "7.0M / 10M\n",
1275
+ "8.0M / 10M\n",
1276
+ "9.0M / 10M\n",
1277
+ "10.0M / 10M\n",
1278
+ "trying to create_parquet\n",
1279
+ "\n",
1280
+ "1.0M / 10M\n",
1281
+ "2.0M / 10M\n",
1282
+ "3.0M / 10M\n",
1283
+ "4.0M / 10M\n",
1284
+ "5.0M / 10M\n",
1285
+ "6.0M / 10M\n",
1286
+ "7.0M / 10M\n",
1287
+ "8.0M / 10M\n",
1288
+ "9.0M / 10M\n",
1289
+ "10.0M / 10M\n",
1290
+ "trying to create_parquet\n",
1291
+ "\n",
1292
+ "1.0M / 10M\n",
1293
+ "2.0M / 10M\n",
1294
+ "3.0M / 10M\n",
1295
+ "4.0M / 10M\n",
1296
+ "5.0M / 10M\n",
1297
+ "6.0M / 10M\n",
1298
+ "7.0M / 10M\n",
1299
+ "8.0M / 10M\n",
1300
+ "9.0M / 10M\n",
1301
+ "10.0M / 10M\n",
1302
+ "trying to create_parquet\n",
1303
+ "\n",
1304
+ "1.0M / 10M\n",
1305
+ "2.0M / 10M\n",
1306
+ "3.0M / 10M\n",
1307
+ "4.0M / 10M\n",
1308
+ "5.0M / 10M\n",
1309
+ "6.0M / 10M\n",
1310
+ "7.0M / 10M\n",
1311
+ "8.0M / 10M\n",
1312
+ "9.0M / 10M\n",
1313
+ "10.0M / 10M\n",
1314
+ "trying to create_parquet\n",
1315
+ "\n",
1316
+ "1.0M / 10M\n",
1317
+ "2.0M / 10M\n",
1318
+ "3.0M / 10M\n",
1319
+ "4.0M / 10M\n",
1320
+ "5.0M / 10M\n",
1321
+ "6.0M / 10M\n",
1322
+ "7.0M / 10M\n",
1323
+ "8.0M / 10M\n",
1324
+ "9.0M / 10M\n",
1325
+ "10.0M / 10M\n",
1326
+ "trying to create_parquet\n",
1327
+ "\n",
1328
+ "1.0M / 10M\n",
1329
+ "2.0M / 10M\n",
1330
+ "3.0M / 10M\n",
1331
+ "4.0M / 10M\n",
1332
+ "5.0M / 10M\n",
1333
+ "6.0M / 10M\n",
1334
+ "7.0M / 10M\n",
1335
+ "8.0M / 10M\n",
1336
+ "9.0M / 10M\n",
1337
+ "6/12\n",
1338
+ "1.0M / 10M\n",
1339
+ "2.0M / 10M\n",
1340
+ "3.0M / 10M\n",
1341
+ "4.0M / 10M\n",
1342
+ "5.0M / 10M\n",
1343
+ "6.0M / 10M\n",
1344
+ "7.0M / 10M\n"
1345
+ ]
1346
+ },
1347
+ {
1348
+ "name": "stderr",
1349
+ "output_type": "stream",
1350
+ "text": [
1351
+ "Decoding error with 134,217,728 bytes, reading another chunk\n",
1352
+ "Decoding error with 134,217,728 bytes, reading another chunk\n"
1353
+ ]
1354
+ },
1355
+ {
1356
+ "name": "stdout",
1357
+ "output_type": "stream",
1358
+ "text": [
1359
+ "8.0M / 10M\n",
1360
+ "9.0M / 10M\n",
1361
+ "10.0M / 10M\n",
1362
+ "trying to create_parquet\n",
1363
+ "\n",
1364
+ "1.0M / 10M\n",
1365
+ "2.0M / 10M\n",
1366
+ "3.0M / 10M\n",
1367
+ "4.0M / 10M\n",
1368
+ "5.0M / 10M\n",
1369
+ "6.0M / 10M\n",
1370
+ "7.0M / 10M\n",
1371
+ "8.0M / 10M\n",
1372
+ "9.0M / 10M\n",
1373
+ "10.0M / 10M\n",
1374
+ "trying to create_parquet\n",
1375
+ "\n",
1376
+ "1.0M / 10M\n",
1377
+ "2.0M / 10M\n",
1378
+ "3.0M / 10M\n",
1379
+ "4.0M / 10M\n",
1380
+ "5.0M / 10M\n",
1381
+ "6.0M / 10M\n",
1382
+ "7.0M / 10M\n",
1383
+ "8.0M / 10M\n",
1384
+ "9.0M / 10M\n",
1385
+ "10.0M / 10M\n",
1386
+ "trying to create_parquet\n",
1387
+ "\n",
1388
+ "1.0M / 10M\n",
1389
+ "2.0M / 10M\n",
1390
+ "3.0M / 10M\n",
1391
+ "4.0M / 10M\n",
1392
+ "5.0M / 10M\n",
1393
+ "6.0M / 10M\n",
1394
+ "7.0M / 10M\n",
1395
+ "8.0M / 10M\n",
1396
+ "9.0M / 10M\n",
1397
+ "10.0M / 10M\n",
1398
+ "trying to create_parquet\n",
1399
+ "\n",
1400
+ "1.0M / 10M\n",
1401
+ "2.0M / 10M\n",
1402
+ "3.0M / 10M\n",
1403
+ "4.0M / 10M\n",
1404
+ "5.0M / 10M\n",
1405
+ "6.0M / 10M\n",
1406
+ "7.0M / 10M\n",
1407
+ "8.0M / 10M\n",
1408
+ "9.0M / 10M\n",
1409
+ "10.0M / 10M\n",
1410
+ "trying to create_parquet\n",
1411
+ "\n",
1412
+ "1.0M / 10M\n",
1413
+ "2.0M / 10M\n",
1414
+ "3.0M / 10M\n",
1415
+ "4.0M / 10M\n",
1416
+ "5.0M / 10M\n",
1417
+ "6.0M / 10M\n",
1418
+ "7.0M / 10M\n",
1419
+ "8.0M / 10M\n",
1420
+ "9.0M / 10M\n"
1421
+ ]
1422
+ },
1423
+ {
1424
+ "name": "stderr",
1425
+ "output_type": "stream",
1426
+ "text": [
1427
+ "Decoding error with 134,217,728 bytes, reading another chunk\n",
1428
+ "Decoding error with 134,217,728 bytes, reading another chunk\n"
1429
+ ]
1430
+ },
1431
+ {
1432
+ "name": "stdout",
1433
+ "output_type": "stream",
1434
+ "text": [
1435
+ "10.0M / 10M\n",
1436
+ "trying to create_parquet\n",
1437
+ "\n",
1438
+ "1.0M / 10M\n",
1439
+ "2.0M / 10M\n",
1440
+ "3.0M / 10M\n",
1441
+ "4.0M / 10M\n",
1442
+ "5.0M / 10M\n",
1443
+ "6.0M / 10M\n",
1444
+ "7.0M / 10M\n",
1445
+ "8.0M / 10M\n",
1446
+ "9.0M / 10M\n",
1447
+ "10.0M / 10M\n",
1448
+ "trying to create_parquet\n",
1449
+ "\n",
1450
+ "1.0M / 10M\n",
1451
+ "2.0M / 10M\n",
1452
+ "3.0M / 10M\n",
1453
+ "4.0M / 10M\n",
1454
+ "5.0M / 10M\n",
1455
+ "6.0M / 10M\n",
1456
+ "7.0M / 10M\n",
1457
+ "8.0M / 10M\n",
1458
+ "9.0M / 10M\n",
1459
+ "10.0M / 10M\n",
1460
+ "trying to create_parquet\n",
1461
+ "\n",
1462
+ "1.0M / 10M\n",
1463
+ "2.0M / 10M\n",
1464
+ "3.0M / 10M\n",
1465
+ "4.0M / 10M\n",
1466
+ "5.0M / 10M\n",
1467
+ "6.0M / 10M\n",
1468
+ "7.0M / 10M\n",
1469
+ "8.0M / 10M\n",
1470
+ "9.0M / 10M\n",
1471
+ "10.0M / 10M\n",
1472
+ "trying to create_parquet\n",
1473
+ "\n",
1474
+ "1.0M / 10M\n",
1475
+ "2.0M / 10M\n",
1476
+ "3.0M / 10M\n",
1477
+ "4.0M / 10M\n",
1478
+ "5.0M / 10M\n",
1479
+ "6.0M / 10M\n",
1480
+ "7.0M / 10M\n",
1481
+ "8.0M / 10M\n"
1482
+ ]
1483
+ },
1484
+ {
1485
+ "name": "stderr",
1486
+ "output_type": "stream",
1487
+ "text": [
1488
+ "Decoding error with 134,217,728 bytes, reading another chunk\n",
1489
+ "Decoding error with 134,217,728 bytes, reading another chunk\n"
1490
+ ]
1491
+ },
1492
+ {
1493
+ "name": "stdout",
1494
+ "output_type": "stream",
1495
+ "text": [
1496
+ "9.0M / 10M\n",
1497
+ "10.0M / 10M\n",
1498
+ "trying to create_parquet\n",
1499
+ "\n",
1500
+ "1.0M / 10M\n",
1501
+ "2.0M / 10M\n",
1502
+ "3.0M / 10M\n",
1503
+ "4.0M / 10M\n",
1504
+ "5.0M / 10M\n",
1505
+ "6.0M / 10M\n",
1506
+ "7.0M / 10M\n",
1507
+ "8.0M / 10M\n",
1508
+ "9.0M / 10M\n",
1509
+ "10.0M / 10M\n",
1510
+ "trying to create_parquet\n",
1511
+ "\n",
1512
+ "1.0M / 10M\n",
1513
+ "2.0M / 10M\n",
1514
+ "3.0M / 10M\n",
1515
+ "4.0M / 10M\n",
1516
+ "5.0M / 10M\n",
1517
+ "6.0M / 10M\n",
1518
+ "7.0M / 10M\n",
1519
+ "8.0M / 10M\n",
1520
+ "9.0M / 10M\n",
1521
+ "10.0M / 10M\n",
1522
+ "trying to create_parquet\n",
1523
+ "\n",
1524
+ "1.0M / 10M\n",
1525
+ "2.0M / 10M\n"
1526
+ ]
1527
+ },
1528
+ {
1529
+ "name": "stderr",
1530
+ "output_type": "stream",
1531
+ "text": [
1532
+ "Decoding error with 134,217,728 bytes, reading another chunk\n",
1533
+ "Decoding error with 134,217,728 bytes, reading another chunk\n"
1534
+ ]
1535
+ },
1536
+ {
1537
+ "name": "stdout",
1538
+ "output_type": "stream",
1539
+ "text": [
1540
+ "3.0M / 10M\n",
1541
+ "4.0M / 10M\n",
1542
+ "5.0M / 10M\n",
1543
+ "6.0M / 10M\n",
1544
+ "7.0M / 10M\n",
1545
+ "8.0M / 10M\n",
1546
+ "9.0M / 10M\n",
1547
+ "10.0M / 10M\n",
1548
+ "trying to create_parquet\n",
1549
+ "\n",
1550
+ "1.0M / 10M\n",
1551
+ "2.0M / 10M\n",
1552
+ "3.0M / 10M\n",
1553
+ "4.0M / 10M\n",
1554
+ "5.0M / 10M\n",
1555
+ "6.0M / 10M\n",
1556
+ "7.0M / 10M\n",
1557
+ "8.0M / 10M\n",
1558
+ "9.0M / 10M\n",
1559
+ "10.0M / 10M\n",
1560
+ "trying to create_parquet\n",
1561
+ "\n",
1562
+ "1.0M / 10M\n",
1563
+ "2.0M / 10M\n",
1564
+ "3.0M / 10M\n",
1565
+ "4.0M / 10M\n",
1566
+ "5.0M / 10M\n",
1567
+ "6.0M / 10M\n",
1568
+ "7.0M / 10M\n",
1569
+ "8.0M / 10M\n",
1570
+ "9.0M / 10M\n",
1571
+ "10.0M / 10M\n",
1572
+ "trying to create_parquet\n",
1573
+ "\n",
1574
+ "1.0M / 10M\n",
1575
+ "2.0M / 10M\n",
1576
+ "7/12\n",
1577
+ "1.0M / 10M\n",
1578
+ "2.0M / 10M\n",
1579
+ "3.0M / 10M\n",
1580
+ "4.0M / 10M\n",
1581
+ "5.0M / 10M\n",
1582
+ "6.0M / 10M\n",
1583
+ "7.0M / 10M\n",
1584
+ "8.0M / 10M\n",
1585
+ "9.0M / 10M\n",
1586
+ "10.0M / 10M\n",
1587
+ "trying to create_parquet\n",
1588
+ "\n",
1589
+ "1.0M / 10M\n",
1590
+ "2.0M / 10M\n",
1591
+ "3.0M / 10M\n",
1592
+ "4.0M / 10M\n",
1593
+ "5.0M / 10M\n",
1594
+ "6.0M / 10M\n",
1595
+ "7.0M / 10M\n",
1596
+ "8.0M / 10M\n",
1597
+ "9.0M / 10M\n",
1598
+ "10.0M / 10M\n",
1599
+ "trying to create_parquet\n",
1600
+ "\n",
1601
+ "1.0M / 10M\n",
1602
+ "2.0M / 10M\n",
1603
+ "3.0M / 10M\n",
1604
+ "4.0M / 10M\n",
1605
+ "5.0M / 10M\n",
1606
+ "6.0M / 10M\n",
1607
+ "7.0M / 10M\n",
1608
+ "8.0M / 10M\n",
1609
+ "9.0M / 10M\n",
1610
+ "10.0M / 10M\n",
1611
+ "trying to create_parquet\n",
1612
+ "\n",
1613
+ "1.0M / 10M\n",
1614
+ "2.0M / 10M\n",
1615
+ "3.0M / 10M\n",
1616
+ "4.0M / 10M\n",
1617
+ "5.0M / 10M\n",
1618
+ "6.0M / 10M\n",
1619
+ "7.0M / 10M\n",
1620
+ "8.0M / 10M\n",
1621
+ "9.0M / 10M\n",
1622
+ "10.0M / 10M\n",
1623
+ "trying to create_parquet\n",
1624
+ "\n",
1625
+ "1.0M / 10M\n",
1626
+ "2.0M / 10M\n",
1627
+ "3.0M / 10M\n",
1628
+ "4.0M / 10M\n",
1629
+ "5.0M / 10M\n",
1630
+ "6.0M / 10M\n",
1631
+ "7.0M / 10M\n",
1632
+ "8.0M / 10M\n",
1633
+ "9.0M / 10M\n",
1634
+ "10.0M / 10M\n",
1635
+ "trying to create_parquet\n",
1636
+ "\n",
1637
+ "1.0M / 10M\n",
1638
+ "2.0M / 10M\n",
1639
+ "3.0M / 10M\n",
1640
+ "4.0M / 10M\n",
1641
+ "5.0M / 10M\n",
1642
+ "6.0M / 10M\n",
1643
+ "7.0M / 10M\n",
1644
+ "8.0M / 10M\n",
1645
+ "9.0M / 10M\n",
1646
+ "10.0M / 10M\n",
1647
+ "trying to create_parquet\n",
1648
+ "\n",
1649
+ "1.0M / 10M\n",
1650
+ "2.0M / 10M\n",
1651
+ "3.0M / 10M\n",
1652
+ "4.0M / 10M\n",
1653
+ "5.0M / 10M\n",
1654
+ "6.0M / 10M\n",
1655
+ "7.0M / 10M\n",
1656
+ "8.0M / 10M\n",
1657
+ "9.0M / 10M\n",
1658
+ "10.0M / 10M\n",
1659
+ "trying to create_parquet\n",
1660
+ "\n",
1661
+ "1.0M / 10M\n",
1662
+ "2.0M / 10M\n",
1663
+ "3.0M / 10M\n",
1664
+ "4.0M / 10M\n",
1665
+ "5.0M / 10M\n",
1666
+ "6.0M / 10M\n",
1667
+ "7.0M / 10M\n",
1668
+ "8.0M / 10M\n",
1669
+ "9.0M / 10M\n",
1670
+ "10.0M / 10M\n",
1671
+ "trying to create_parquet\n",
1672
+ "\n",
1673
+ "1.0M / 10M\n",
1674
+ "2.0M / 10M\n",
1675
+ "3.0M / 10M\n",
1676
+ "4.0M / 10M\n",
1677
+ "5.0M / 10M\n",
1678
+ "6.0M / 10M\n",
1679
+ "7.0M / 10M\n",
1680
+ "8.0M / 10M\n",
1681
+ "9.0M / 10M\n",
1682
+ "10.0M / 10M\n",
1683
+ "trying to create_parquet\n",
1684
+ "\n",
1685
+ "1.0M / 10M\n",
1686
+ "2.0M / 10M\n",
1687
+ "3.0M / 10M\n",
1688
+ "4.0M / 10M\n",
1689
+ "5.0M / 10M\n",
1690
+ "6.0M / 10M\n",
1691
+ "7.0M / 10M\n",
1692
+ "8.0M / 10M\n",
1693
+ "9.0M / 10M\n",
1694
+ "10.0M / 10M\n",
1695
+ "trying to create_parquet\n",
1696
+ "\n",
1697
+ "1.0M / 10M\n",
1698
+ "2.0M / 10M\n",
1699
+ "3.0M / 10M\n",
1700
+ "4.0M / 10M\n",
1701
+ "5.0M / 10M\n",
1702
+ "6.0M / 10M\n",
1703
+ "7.0M / 10M\n",
1704
+ "8.0M / 10M\n",
1705
+ "9.0M / 10M\n",
1706
+ "10.0M / 10M\n",
1707
+ "trying to create_parquet\n",
1708
+ "\n",
1709
+ "1.0M / 10M\n",
1710
+ "2.0M / 10M\n",
1711
+ "3.0M / 10M\n",
1712
+ "4.0M / 10M\n",
1713
+ "5.0M / 10M\n",
1714
+ "6.0M / 10M\n",
1715
+ "7.0M / 10M\n",
1716
+ "8.0M / 10M\n",
1717
+ "9.0M / 10M\n",
1718
+ "10.0M / 10M\n",
1719
+ "trying to create_parquet\n",
1720
+ "\n",
1721
+ "1.0M / 10M\n",
1722
+ "2.0M / 10M\n",
1723
+ "3.0M / 10M\n"
1724
+ ]
1725
+ },
1726
+ {
1727
+ "name": "stderr",
1728
+ "output_type": "stream",
1729
+ "text": [
1730
+ "Decoding error with 134,217,728 bytes, reading another chunk\n",
1731
+ "Decoding error with 134,217,728 bytes, reading another chunk\n"
1732
+ ]
1733
+ },
1734
+ {
1735
+ "name": "stdout",
1736
+ "output_type": "stream",
1737
+ "text": [
1738
+ "4.0M / 10M\n",
1739
+ "5.0M / 10M\n",
1740
+ "6.0M / 10M\n",
1741
+ "7.0M / 10M\n",
1742
+ "8.0M / 10M\n",
1743
+ "9.0M / 10M\n",
1744
+ "10.0M / 10M\n",
1745
+ "trying to create_parquet\n",
1746
+ "\n",
1747
+ "1.0M / 10M\n",
1748
+ "2.0M / 10M\n",
1749
+ "3.0M / 10M\n",
1750
+ "4.0M / 10M\n",
1751
+ "5.0M / 10M\n",
1752
+ "6.0M / 10M\n",
1753
+ "7.0M / 10M\n",
1754
+ "8.0M / 10M\n",
1755
+ "9.0M / 10M\n",
1756
+ "10.0M / 10M\n",
1757
+ "trying to create_parquet\n",
1758
+ "\n",
1759
+ "1.0M / 10M\n",
1760
+ "2.0M / 10M\n",
1761
+ "3.0M / 10M\n",
1762
+ "4.0M / 10M\n",
1763
+ "5.0M / 10M\n",
1764
+ "6.0M / 10M\n",
1765
+ "7.0M / 10M\n",
1766
+ "8.0M / 10M\n",
1767
+ "9.0M / 10M\n",
1768
+ "10.0M / 10M\n",
1769
+ "trying to create_parquet\n",
1770
+ "\n",
1771
+ "1.0M / 10M\n",
1772
+ "2.0M / 10M\n",
1773
+ "3.0M / 10M\n",
1774
+ "4.0M / 10M\n",
1775
+ "5.0M / 10M\n",
1776
+ "6.0M / 10M\n",
1777
+ "7.0M / 10M\n",
1778
+ "8.0M / 10M\n",
1779
+ "9.0M / 10M\n",
1780
+ "10.0M / 10M\n",
1781
+ "trying to create_parquet\n",
1782
+ "\n",
1783
+ "1.0M / 10M\n",
1784
+ "2.0M / 10M\n",
1785
+ "3.0M / 10M\n",
1786
+ "4.0M / 10M\n",
1787
+ "5.0M / 10M\n",
1788
+ "6.0M / 10M\n",
1789
+ "7.0M / 10M\n",
1790
+ "8/12\n",
1791
+ "1.0M / 10M\n",
1792
+ "2.0M / 10M\n",
1793
+ "3.0M / 10M\n",
1794
+ "4.0M / 10M\n",
1795
+ "5.0M / 10M\n",
1796
+ "6.0M / 10M\n",
1797
+ "7.0M / 10M\n",
1798
+ "8.0M / 10M\n",
1799
+ "9.0M / 10M\n",
1800
+ "10.0M / 10M\n",
1801
+ "trying to create_parquet\n",
1802
+ "\n",
1803
+ "1.0M / 10M\n",
1804
+ "2.0M / 10M\n",
1805
+ "3.0M / 10M\n",
1806
+ "4.0M / 10M\n",
1807
+ "5.0M / 10M\n",
1808
+ "6.0M / 10M\n",
1809
+ "7.0M / 10M\n",
1810
+ "8.0M / 10M\n",
1811
+ "9.0M / 10M\n",
1812
+ "10.0M / 10M\n",
1813
+ "trying to create_parquet\n",
1814
+ "\n",
1815
+ "1.0M / 10M\n",
1816
+ "2.0M / 10M\n",
1817
+ "3.0M / 10M\n",
1818
+ "4.0M / 10M\n",
1819
+ "5.0M / 10M\n",
1820
+ "6.0M / 10M\n",
1821
+ "7.0M / 10M\n",
1822
+ "8.0M / 10M\n",
1823
+ "9.0M / 10M\n",
1824
+ "10.0M / 10M\n",
1825
+ "trying to create_parquet\n",
1826
+ "\n",
1827
+ "1.0M / 10M\n",
1828
+ "2.0M / 10M\n",
1829
+ "3.0M / 10M\n",
1830
+ "4.0M / 10M\n",
1831
+ "5.0M / 10M\n",
1832
+ "6.0M / 10M\n",
1833
+ "7.0M / 10M\n",
1834
+ "8.0M / 10M\n",
1835
+ "9.0M / 10M\n",
1836
+ "10.0M / 10M\n",
1837
+ "trying to create_parquet\n",
1838
+ "\n",
1839
+ "1.0M / 10M\n",
1840
+ "2.0M / 10M\n",
1841
+ "3.0M / 10M\n",
1842
+ "4.0M / 10M\n",
1843
+ "5.0M / 10M\n",
1844
+ "6.0M / 10M\n",
1845
+ "7.0M / 10M\n",
1846
+ "8.0M / 10M\n",
1847
+ "9.0M / 10M\n",
1848
+ "10.0M / 10M\n",
1849
+ "trying to create_parquet\n",
1850
+ "\n",
1851
+ "1.0M / 10M\n",
1852
+ "2.0M / 10M\n",
1853
+ "3.0M / 10M\n",
1854
+ "4.0M / 10M\n",
1855
+ "5.0M / 10M\n",
1856
+ "6.0M / 10M\n",
1857
+ "7.0M / 10M\n",
1858
+ "8.0M / 10M\n",
1859
+ "9.0M / 10M\n",
1860
+ "10.0M / 10M\n",
1861
+ "trying to create_parquet\n",
1862
+ "\n",
1863
+ "1.0M / 10M\n",
1864
+ "2.0M / 10M\n",
1865
+ "3.0M / 10M\n",
1866
+ "4.0M / 10M\n",
1867
+ "5.0M / 10M\n",
1868
+ "6.0M / 10M\n",
1869
+ "7.0M / 10M\n",
1870
+ "8.0M / 10M\n",
1871
+ "9.0M / 10M\n",
1872
+ "10.0M / 10M\n",
1873
+ "trying to create_parquet\n",
1874
+ "\n",
1875
+ "1.0M / 10M\n",
1876
+ "2.0M / 10M\n",
1877
+ "3.0M / 10M\n",
1878
+ "4.0M / 10M\n",
1879
+ "5.0M / 10M\n",
1880
+ "6.0M / 10M\n",
1881
+ "7.0M / 10M\n",
1882
+ "8.0M / 10M\n",
1883
+ "9.0M / 10M\n",
1884
+ "10.0M / 10M\n",
1885
+ "trying to create_parquet\n",
1886
+ "\n",
1887
+ "1.0M / 10M\n",
1888
+ "2.0M / 10M\n",
1889
+ "3.0M / 10M\n",
1890
+ "4.0M / 10M\n",
1891
+ "5.0M / 10M\n",
1892
+ "6.0M / 10M\n",
1893
+ "7.0M / 10M\n",
1894
+ "8.0M / 10M\n",
1895
+ "9.0M / 10M\n",
1896
+ "10.0M / 10M\n",
1897
+ "trying to create_parquet\n",
1898
+ "\n",
1899
+ "1.0M / 10M\n",
1900
+ "2.0M / 10M\n",
1901
+ "3.0M / 10M\n",
1902
+ "4.0M / 10M\n",
1903
+ "5.0M / 10M\n",
1904
+ "6.0M / 10M\n",
1905
+ "7.0M / 10M\n",
1906
+ "8.0M / 10M\n",
1907
+ "9.0M / 10M\n",
1908
+ "10.0M / 10M\n",
1909
+ "trying to create_parquet\n",
1910
+ "\n",
1911
+ "1.0M / 10M\n",
1912
+ "2.0M / 10M\n",
1913
+ "3.0M / 10M\n",
1914
+ "4.0M / 10M\n",
1915
+ "5.0M / 10M\n",
1916
+ "6.0M / 10M\n",
1917
+ "7.0M / 10M\n",
1918
+ "8.0M / 10M\n",
1919
+ "9.0M / 10M\n",
1920
+ "10.0M / 10M\n",
1921
+ "trying to create_parquet\n",
1922
+ "\n",
1923
+ "1.0M / 10M\n",
1924
+ "2.0M / 10M\n",
1925
+ "3.0M / 10M\n",
1926
+ "4.0M / 10M\n",
1927
+ "5.0M / 10M\n",
1928
+ "6.0M / 10M\n",
1929
+ "7.0M / 10M\n",
1930
+ "8.0M / 10M\n",
1931
+ "9.0M / 10M\n",
1932
+ "10.0M / 10M\n",
1933
+ "trying to create_parquet\n",
1934
+ "\n",
1935
+ "1.0M / 10M\n",
1936
+ "2.0M / 10M\n",
1937
+ "3.0M / 10M\n",
1938
+ "4.0M / 10M\n",
1939
+ "5.0M / 10M\n",
1940
+ "6.0M / 10M\n",
1941
+ "7.0M / 10M\n",
1942
+ "8.0M / 10M\n",
1943
+ "9.0M / 10M\n",
1944
+ "10.0M / 10M\n",
1945
+ "trying to create_parquet\n",
1946
+ "\n",
1947
+ "1.0M / 10M\n",
1948
+ "2.0M / 10M\n",
1949
+ "3.0M / 10M\n",
1950
+ "4.0M / 10M\n",
1951
+ "5.0M / 10M\n",
1952
+ "6.0M / 10M\n",
1953
+ "7.0M / 10M\n",
1954
+ "8.0M / 10M\n",
1955
+ "9.0M / 10M\n",
1956
+ "10.0M / 10M\n",
1957
+ "trying to create_parquet\n",
1958
+ "\n",
1959
+ "1.0M / 10M\n",
1960
+ "2.0M / 10M\n",
1961
+ "3.0M / 10M\n",
1962
+ "4.0M / 10M\n",
1963
+ "5.0M / 10M\n",
1964
+ "6.0M / 10M\n",
1965
+ "7.0M / 10M\n",
1966
+ "8.0M / 10M\n",
1967
+ "9.0M / 10M\n",
1968
+ "10.0M / 10M\n",
1969
+ "trying to create_parquet\n",
1970
+ "\n",
1971
+ "1.0M / 10M\n",
1972
+ "2.0M / 10M\n",
1973
+ "3.0M / 10M\n",
1974
+ "4.0M / 10M\n",
1975
+ "5.0M / 10M\n",
1976
+ "6.0M / 10M\n",
1977
+ "7.0M / 10M\n",
1978
+ "8.0M / 10M\n",
1979
+ "9.0M / 10M\n",
1980
+ "10.0M / 10M\n",
1981
+ "trying to create_parquet\n",
1982
+ "\n",
1983
+ "1.0M / 10M\n",
1984
+ "2.0M / 10M\n",
1985
+ "3.0M / 10M\n",
1986
+ "4.0M / 10M\n",
1987
+ "5.0M / 10M\n",
1988
+ "6.0M / 10M\n",
1989
+ "7.0M / 10M\n",
1990
+ "8.0M / 10M\n",
1991
+ "9.0M / 10M\n",
1992
+ "10.0M / 10M\n",
1993
+ "trying to create_parquet\n",
1994
+ "\n",
1995
+ "9/12\n",
1996
+ "1.0M / 10M\n",
1997
+ "2.0M / 10M\n",
1998
+ "3.0M / 10M\n",
1999
+ "4.0M / 10M\n",
2000
+ "5.0M / 10M\n",
2001
+ "6.0M / 10M\n",
2002
+ "7.0M / 10M\n",
2003
+ "8.0M / 10M\n",
2004
+ "9.0M / 10M\n",
2005
+ "10.0M / 10M\n",
2006
+ "trying to create_parquet\n",
2007
+ "\n",
2008
+ "1.0M / 10M\n",
2009
+ "2.0M / 10M\n",
2010
+ "3.0M / 10M\n",
2011
+ "4.0M / 10M\n",
2012
+ "5.0M / 10M\n",
2013
+ "6.0M / 10M\n",
2014
+ "7.0M / 10M\n",
2015
+ "8.0M / 10M\n",
2016
+ "9.0M / 10M\n",
2017
+ "10.0M / 10M\n",
2018
+ "trying to create_parquet\n",
2019
+ "\n",
2020
+ "1.0M / 10M\n",
2021
+ "2.0M / 10M\n",
2022
+ "3.0M / 10M\n",
2023
+ "4.0M / 10M\n",
2024
+ "5.0M / 10M\n",
2025
+ "6.0M / 10M\n",
2026
+ "7.0M / 10M\n",
2027
+ "8.0M / 10M\n",
2028
+ "9.0M / 10M\n",
2029
+ "10.0M / 10M\n",
2030
+ "trying to create_parquet\n",
2031
+ "\n"
2032
+ ]
2033
+ },
2034
+ {
2035
+ "name": "stderr",
2036
+ "output_type": "stream",
2037
+ "text": [
2038
+ "Decoding error with 134,217,728 bytes, reading another chunk\n",
2039
+ "Decoding error with 134,217,728 bytes, reading another chunk\n"
2040
+ ]
2041
+ },
2042
+ {
2043
+ "name": "stdout",
2044
+ "output_type": "stream",
2045
+ "text": [
2046
+ "1.0M / 10M\n",
2047
+ "2.0M / 10M\n",
2048
+ "3.0M / 10M\n",
2049
+ "4.0M / 10M\n"
2050
+ ]
2051
+ },
2052
+ {
2053
+ "name": "stderr",
2054
+ "output_type": "stream",
2055
+ "text": [
2056
+ "Decoding error with 134,217,728 bytes, reading another chunk\n",
2057
+ "Decoding error with 134,217,728 bytes, reading another chunk\n"
2058
+ ]
2059
+ },
2060
+ {
2061
+ "name": "stdout",
2062
+ "output_type": "stream",
2063
+ "text": [
2064
+ "5.0M / 10M\n",
2065
+ "6.0M / 10M\n",
2066
+ "7.0M / 10M\n",
2067
+ "8.0M / 10M\n",
2068
+ "9.0M / 10M\n",
2069
+ "10.0M / 10M\n",
2070
+ "trying to create_parquet\n",
2071
+ "\n",
2072
+ "1.0M / 10M\n",
2073
+ "2.0M / 10M\n",
2074
+ "3.0M / 10M\n",
2075
+ "4.0M / 10M\n",
2076
+ "5.0M / 10M\n",
2077
+ "6.0M / 10M\n",
2078
+ "7.0M / 10M\n",
2079
+ "8.0M / 10M\n",
2080
+ "9.0M / 10M\n",
2081
+ "10.0M / 10M\n",
2082
+ "trying to create_parquet\n",
2083
+ "\n",
2084
+ "1.0M / 10M\n",
2085
+ "2.0M / 10M\n",
2086
+ "3.0M / 10M\n",
2087
+ "4.0M / 10M\n",
2088
+ "5.0M / 10M\n",
2089
+ "6.0M / 10M\n",
2090
+ "7.0M / 10M\n",
2091
+ "8.0M / 10M\n",
2092
+ "9.0M / 10M\n",
2093
+ "10.0M / 10M\n",
2094
+ "trying to create_parquet\n",
2095
+ "\n"
2096
+ ]
2097
+ },
2098
+ {
2099
+ "name": "stderr",
2100
+ "output_type": "stream",
2101
+ "text": [
2102
+ "Decoding error with 134,217,728 bytes, reading another chunk\n",
2103
+ "Decoding error with 134,217,728 bytes, reading another chunk\n"
2104
+ ]
2105
+ },
2106
+ {
2107
+ "name": "stdout",
2108
+ "output_type": "stream",
2109
+ "text": [
2110
+ "1.0M / 10M\n",
2111
+ "2.0M / 10M\n",
2112
+ "3.0M / 10M\n",
2113
+ "4.0M / 10M\n",
2114
+ "5.0M / 10M\n",
2115
+ "6.0M / 10M\n",
2116
+ "7.0M / 10M\n",
2117
+ "8.0M / 10M\n",
2118
+ "9.0M / 10M\n",
2119
+ "10.0M / 10M\n",
2120
+ "trying to create_parquet\n",
2121
+ "\n",
2122
+ "1.0M / 10M\n",
2123
+ "2.0M / 10M\n",
2124
+ "3.0M / 10M\n",
2125
+ "4.0M / 10M\n",
2126
+ "5.0M / 10M\n",
2127
+ "6.0M / 10M\n",
2128
+ "7.0M / 10M\n",
2129
+ "8.0M / 10M\n",
2130
+ "9.0M / 10M\n",
2131
+ "10.0M / 10M\n",
2132
+ "trying to create_parquet\n",
2133
+ "\n",
2134
+ "1.0M / 10M\n",
2135
+ "2.0M / 10M\n",
2136
+ "3.0M / 10M\n",
2137
+ "4.0M / 10M\n",
2138
+ "5.0M / 10M\n",
2139
+ "6.0M / 10M\n",
2140
+ "7.0M / 10M\n",
2141
+ "8.0M / 10M\n",
2142
+ "9.0M / 10M\n",
2143
+ "10.0M / 10M\n",
2144
+ "trying to create_parquet\n",
2145
+ "\n",
2146
+ "1.0M / 10M\n",
2147
+ "2.0M / 10M\n",
2148
+ "3.0M / 10M\n",
2149
+ "4.0M / 10M\n",
2150
+ "5.0M / 10M\n",
2151
+ "6.0M / 10M\n",
2152
+ "7.0M / 10M\n",
2153
+ "8.0M / 10M\n",
2154
+ "9.0M / 10M\n",
2155
+ "10.0M / 10M\n",
2156
+ "trying to create_parquet\n",
2157
+ "\n",
2158
+ "1.0M / 10M\n",
2159
+ "2.0M / 10M\n",
2160
+ "3.0M / 10M\n",
2161
+ "4.0M / 10M\n",
2162
+ "5.0M / 10M\n",
2163
+ "6.0M / 10M\n",
2164
+ "7.0M / 10M\n",
2165
+ "8.0M / 10M\n",
2166
+ "9.0M / 10M\n"
2167
+ ]
2168
+ },
2169
+ {
2170
+ "name": "stderr",
2171
+ "output_type": "stream",
2172
+ "text": [
2173
+ "Decoding error with 134,217,728 bytes, reading another chunk\n",
2174
+ "Decoding error with 134,217,728 bytes, reading another chunk\n"
2175
+ ]
2176
+ },
2177
+ {
2178
+ "name": "stdout",
2179
+ "output_type": "stream",
2180
+ "text": [
2181
+ "10.0M / 10M\n",
2182
+ "trying to create_parquet\n",
2183
+ "\n",
2184
+ "1.0M / 10M\n",
2185
+ "2.0M / 10M\n",
2186
+ "3.0M / 10M\n",
2187
+ "4.0M / 10M\n",
2188
+ "5.0M / 10M\n",
2189
+ "6.0M / 10M\n",
2190
+ "7.0M / 10M\n",
2191
+ "8.0M / 10M\n",
2192
+ "9.0M / 10M\n",
2193
+ "10.0M / 10M\n",
2194
+ "trying to create_parquet\n",
2195
+ "\n",
2196
+ "1.0M / 10M\n",
2197
+ "2.0M / 10M\n",
2198
+ "3.0M / 10M\n",
2199
+ "4.0M / 10M\n",
2200
+ "5.0M / 10M\n",
2201
+ "6.0M / 10M\n",
2202
+ "7.0M / 10M\n",
2203
+ "8.0M / 10M\n",
2204
+ "9.0M / 10M\n",
2205
+ "10.0M / 10M\n",
2206
+ "trying to create_parquet\n",
2207
+ "\n",
2208
+ "1.0M / 10M\n",
2209
+ "2.0M / 10M\n",
2210
+ "3.0M / 10M\n",
2211
+ "4.0M / 10M\n",
2212
+ "5.0M / 10M\n",
2213
+ "6.0M / 10M\n",
2214
+ "7.0M / 10M\n",
2215
+ "8.0M / 10M\n",
2216
+ "9.0M / 10M\n",
2217
+ "10.0M / 10M\n",
2218
+ "trying to create_parquet\n",
2219
+ "\n",
2220
+ "1.0M / 10M\n",
2221
+ "2.0M / 10M\n",
2222
+ "3.0M / 10M\n",
2223
+ "4.0M / 10M\n",
2224
+ "5.0M / 10M\n",
2225
+ "6.0M / 10M\n",
2226
+ "7.0M / 10M\n",
2227
+ "8.0M / 10M\n",
2228
+ "9.0M / 10M\n",
2229
+ "10.0M / 10M\n",
2230
+ "trying to create_parquet\n",
2231
+ "\n",
2232
+ "1.0M / 10M\n",
2233
+ "2.0M / 10M\n",
2234
+ "3.0M / 10M\n",
2235
+ "4.0M / 10M\n",
2236
+ "5.0M / 10M\n",
2237
+ "6.0M / 10M\n",
2238
+ "7.0M / 10M\n"
2239
+ ]
2240
+ },
2241
+ {
2242
+ "name": "stderr",
2243
+ "output_type": "stream",
2244
+ "text": [
2245
+ "Decoding error with 134,217,728 bytes, reading another chunk\n",
2246
+ "Decoding error with 134,217,728 bytes, reading another chunk\n"
2247
+ ]
2248
+ },
2249
+ {
2250
+ "name": "stdout",
2251
+ "output_type": "stream",
2252
+ "text": [
2253
+ "8.0M / 10M\n",
2254
+ "9.0M / 10M\n",
2255
+ "10.0M / 10M\n",
2256
+ "trying to create_parquet\n",
2257
+ "\n",
2258
+ "1.0M / 10M\n",
2259
+ "10/12\n",
2260
+ "1.0M / 10M\n",
2261
+ "2.0M / 10M\n",
2262
+ "3.0M / 10M\n",
2263
+ "4.0M / 10M\n",
2264
+ "5.0M / 10M\n",
2265
+ "6.0M / 10M\n",
2266
+ "7.0M / 10M\n",
2267
+ "8.0M / 10M\n",
2268
+ "9.0M / 10M\n",
2269
+ "10.0M / 10M\n",
2270
+ "trying to create_parquet\n",
2271
+ "\n",
2272
+ "1.0M / 10M\n"
2273
+ ]
2274
+ },
2275
+ {
2276
+ "name": "stderr",
2277
+ "output_type": "stream",
2278
+ "text": [
2279
+ "Decoding error with 134,217,728 bytes, reading another chunk\n",
2280
+ "Decoding error with 134,217,728 bytes, reading another chunk\n"
2281
+ ]
2282
+ },
2283
+ {
2284
+ "name": "stdout",
2285
+ "output_type": "stream",
2286
+ "text": [
2287
+ "2.0M / 10M\n",
2288
+ "3.0M / 10M\n",
2289
+ "4.0M / 10M\n",
2290
+ "5.0M / 10M\n",
2291
+ "6.0M / 10M\n",
2292
+ "7.0M / 10M\n",
2293
+ "8.0M / 10M\n",
2294
+ "9.0M / 10M\n",
2295
+ "10.0M / 10M\n",
2296
+ "trying to create_parquet\n",
2297
+ "\n",
2298
+ "1.0M / 10M\n",
2299
+ "2.0M / 10M\n",
2300
+ "3.0M / 10M\n",
2301
+ "4.0M / 10M\n",
2302
+ "5.0M / 10M\n",
2303
+ "6.0M / 10M\n",
2304
+ "7.0M / 10M\n",
2305
+ "8.0M / 10M\n",
2306
+ "9.0M / 10M\n",
2307
+ "10.0M / 10M\n",
2308
+ "trying to create_parquet\n",
2309
+ "\n",
2310
+ "1.0M / 10M\n",
2311
+ "2.0M / 10M\n",
2312
+ "3.0M / 10M\n",
2313
+ "4.0M / 10M\n",
2314
+ "5.0M / 10M\n",
2315
+ "6.0M / 10M\n",
2316
+ "7.0M / 10M\n",
2317
+ "8.0M / 10M\n"
2318
+ ]
2319
+ },
2320
+ {
2321
+ "name": "stderr",
2322
+ "output_type": "stream",
2323
+ "text": [
2324
+ "Decoding error with 134,217,728 bytes, reading another chunk\n",
2325
+ "Decoding error with 134,217,728 bytes, reading another chunk\n"
2326
+ ]
2327
+ },
2328
+ {
2329
+ "name": "stdout",
2330
+ "output_type": "stream",
2331
+ "text": [
2332
+ "9.0M / 10M\n",
2333
+ "10.0M / 10M\n",
2334
+ "trying to create_parquet\n",
2335
+ "\n",
2336
+ "1.0M / 10M\n",
2337
+ "2.0M / 10M\n",
2338
+ "3.0M / 10M\n",
2339
+ "4.0M / 10M\n",
2340
+ "5.0M / 10M\n",
2341
+ "6.0M / 10M\n",
2342
+ "7.0M / 10M\n",
2343
+ "8.0M / 10M\n",
2344
+ "9.0M / 10M\n"
2345
+ ]
2346
+ },
2347
+ {
2348
+ "name": "stderr",
2349
+ "output_type": "stream",
2350
+ "text": [
2351
+ "Decoding error with 134,217,728 bytes, reading another chunk\n",
2352
+ "Decoding error with 134,217,728 bytes, reading another chunk\n"
2353
+ ]
2354
+ },
2355
+ {
2356
+ "name": "stdout",
2357
+ "output_type": "stream",
2358
+ "text": [
2359
+ "10.0M / 10M\n",
2360
+ "trying to create_parquet\n",
2361
+ "\n",
2362
+ "1.0M / 10M\n",
2363
+ "2.0M / 10M\n",
2364
+ "3.0M / 10M\n",
2365
+ "4.0M / 10M\n",
2366
+ "5.0M / 10M\n",
2367
+ "6.0M / 10M\n",
2368
+ "7.0M / 10M\n",
2369
+ "8.0M / 10M\n",
2370
+ "9.0M / 10M\n",
2371
+ "10.0M / 10M\n",
2372
+ "trying to create_parquet\n",
2373
+ "\n",
2374
+ "1.0M / 10M\n",
2375
+ "2.0M / 10M\n",
2376
+ "3.0M / 10M\n",
2377
+ "4.0M / 10M\n",
2378
+ "5.0M / 10M\n",
2379
+ "6.0M / 10M\n",
2380
+ "7.0M / 10M\n",
2381
+ "8.0M / 10M\n",
2382
+ "9.0M / 10M\n",
2383
+ "10.0M / 10M\n",
2384
+ "trying to create_parquet\n",
2385
+ "\n",
2386
+ "1.0M / 10M\n",
2387
+ "2.0M / 10M\n",
2388
+ "3.0M / 10M\n",
2389
+ "4.0M / 10M\n",
2390
+ "5.0M / 10M\n",
2391
+ "6.0M / 10M\n",
2392
+ "7.0M / 10M\n",
2393
+ "8.0M / 10M\n",
2394
+ "9.0M / 10M\n",
2395
+ "10.0M / 10M\n",
2396
+ "trying to create_parquet\n",
2397
+ "\n",
2398
+ "1.0M / 10M\n",
2399
+ "2.0M / 10M\n",
2400
+ "3.0M / 10M\n",
2401
+ "4.0M / 10M\n",
2402
+ "5.0M / 10M\n",
2403
+ "6.0M / 10M\n",
2404
+ "7.0M / 10M\n",
2405
+ "8.0M / 10M\n",
2406
+ "9.0M / 10M\n",
2407
+ "10.0M / 10M\n",
2408
+ "trying to create_parquet\n",
2409
+ "\n",
2410
+ "1.0M / 10M\n",
2411
+ "2.0M / 10M\n",
2412
+ "3.0M / 10M\n",
2413
+ "4.0M / 10M\n",
2414
+ "5.0M / 10M\n",
2415
+ "6.0M / 10M\n",
2416
+ "7.0M / 10M\n",
2417
+ "8.0M / 10M\n",
2418
+ "9.0M / 10M\n",
2419
+ "10.0M / 10M\n",
2420
+ "trying to create_parquet\n",
2421
+ "\n",
2422
+ "1.0M / 10M\n",
2423
+ "2.0M / 10M\n",
2424
+ "3.0M / 10M\n",
2425
+ "4.0M / 10M\n",
2426
+ "5.0M / 10M\n",
2427
+ "6.0M / 10M\n",
2428
+ "7.0M / 10M\n",
2429
+ "8.0M / 10M\n",
2430
+ "9.0M / 10M\n",
2431
+ "10.0M / 10M\n",
2432
+ "trying to create_parquet\n",
2433
+ "\n",
2434
+ "1.0M / 10M\n",
2435
+ "2.0M / 10M\n",
2436
+ "3.0M / 10M\n",
2437
+ "4.0M / 10M\n",
2438
+ "5.0M / 10M\n",
2439
+ "6.0M / 10M\n",
2440
+ "7.0M / 10M\n",
2441
+ "8.0M / 10M\n"
2442
+ ]
2443
+ },
2444
+ {
2445
+ "name": "stderr",
2446
+ "output_type": "stream",
2447
+ "text": [
2448
+ "Decoding error with 134,217,728 bytes, reading another chunk\n",
2449
+ "Decoding error with 134,217,728 bytes, reading another chunk\n"
2450
+ ]
2451
+ },
2452
+ {
2453
+ "name": "stdout",
2454
+ "output_type": "stream",
2455
+ "text": [
2456
+ "9.0M / 10M\n",
2457
+ "10.0M / 10M\n",
2458
+ "trying to create_parquet\n",
2459
+ "\n",
2460
+ "1.0M / 10M\n",
2461
+ "2.0M / 10M\n",
2462
+ "3.0M / 10M\n",
2463
+ "4.0M / 10M\n",
2464
+ "5.0M / 10M\n",
2465
+ "6.0M / 10M\n",
2466
+ "7.0M / 10M\n",
2467
+ "8.0M / 10M\n",
2468
+ "9.0M / 10M\n",
2469
+ "10.0M / 10M\n",
2470
+ "trying to create_parquet\n",
2471
+ "\n",
2472
+ "1.0M / 10M\n",
2473
+ "2.0M / 10M\n",
2474
+ "3.0M / 10M\n",
2475
+ "4.0M / 10M\n",
2476
+ "5.0M / 10M\n",
2477
+ "6.0M / 10M\n",
2478
+ "7.0M / 10M\n",
2479
+ "8.0M / 10M\n",
2480
+ "9.0M / 10M\n",
2481
+ "10.0M / 10M\n",
2482
+ "trying to create_parquet\n",
2483
+ "\n",
2484
+ "1.0M / 10M\n",
2485
+ "2.0M / 10M\n",
2486
+ "3.0M / 10M\n",
2487
+ "4.0M / 10M\n",
2488
+ "5.0M / 10M\n",
2489
+ "6.0M / 10M\n",
2490
+ "7.0M / 10M\n",
2491
+ "8.0M / 10M\n",
2492
+ "9.0M / 10M\n",
2493
+ "10.0M / 10M\n",
2494
+ "trying to create_parquet\n",
2495
+ "\n",
2496
+ "1.0M / 10M\n",
2497
+ "2.0M / 10M\n",
2498
+ "3.0M / 10M\n",
2499
+ "4.0M / 10M\n",
2500
+ "5.0M / 10M\n",
2501
+ "6.0M / 10M\n",
2502
+ "7.0M / 10M\n",
2503
+ "8.0M / 10M\n",
2504
+ "9.0M / 10M\n",
2505
+ "10.0M / 10M\n",
2506
+ "trying to create_parquet\n",
2507
+ "\n",
2508
+ "1.0M / 10M\n",
2509
+ "2.0M / 10M\n",
2510
+ "3.0M / 10M\n",
2511
+ "11/12\n",
2512
+ "1.0M / 10M\n",
2513
+ "2.0M / 10M\n",
2514
+ "3.0M / 10M\n",
2515
+ "4.0M / 10M\n",
2516
+ "5.0M / 10M\n",
2517
+ "6.0M / 10M\n",
2518
+ "7.0M / 10M\n",
2519
+ "8.0M / 10M\n",
2520
+ "9.0M / 10M\n",
2521
+ "10.0M / 10M\n",
2522
+ "trying to create_parquet\n",
2523
+ "\n",
2524
+ "1.0M / 10M\n",
2525
+ "2.0M / 10M\n",
2526
+ "3.0M / 10M\n",
2527
+ "4.0M / 10M\n",
2528
+ "5.0M / 10M\n",
2529
+ "6.0M / 10M\n",
2530
+ "7.0M / 10M\n",
2531
+ "8.0M / 10M\n",
2532
+ "9.0M / 10M\n",
2533
+ "10.0M / 10M\n",
2534
+ "trying to create_parquet\n",
2535
+ "\n",
2536
+ "1.0M / 10M\n",
2537
+ "2.0M / 10M\n",
2538
+ "3.0M / 10M\n",
2539
+ "4.0M / 10M\n",
2540
+ "5.0M / 10M\n",
2541
+ "6.0M / 10M\n",
2542
+ "7.0M / 10M\n",
2543
+ "8.0M / 10M\n",
2544
+ "9.0M / 10M\n",
2545
+ "10.0M / 10M\n",
2546
+ "trying to create_parquet\n",
2547
+ "\n",
2548
+ "1.0M / 10M\n",
2549
+ "2.0M / 10M\n",
2550
+ "3.0M / 10M\n",
2551
+ "4.0M / 10M\n",
2552
+ "5.0M / 10M\n",
2553
+ "6.0M / 10M\n",
2554
+ "7.0M / 10M\n",
2555
+ "8.0M / 10M\n",
2556
+ "9.0M / 10M\n",
2557
+ "10.0M / 10M\n",
2558
+ "trying to create_parquet\n",
2559
+ "\n",
2560
+ "1.0M / 10M\n",
2561
+ "2.0M / 10M\n",
2562
+ "3.0M / 10M\n",
2563
+ "4.0M / 10M\n",
2564
+ "5.0M / 10M\n",
2565
+ "6.0M / 10M\n",
2566
+ "7.0M / 10M\n",
2567
+ "8.0M / 10M\n",
2568
+ "9.0M / 10M\n",
2569
+ "10.0M / 10M\n",
2570
+ "trying to create_parquet\n",
2571
+ "\n",
2572
+ "1.0M / 10M\n",
2573
+ "2.0M / 10M\n",
2574
+ "3.0M / 10M\n",
2575
+ "4.0M / 10M\n",
2576
+ "5.0M / 10M\n",
2577
+ "6.0M / 10M\n"
2578
+ ]
2579
+ },
2580
+ {
2581
+ "name": "stderr",
2582
+ "output_type": "stream",
2583
+ "text": [
2584
+ "Decoding error with 134,217,728 bytes, reading another chunk\n",
2585
+ "Decoding error with 134,217,728 bytes, reading another chunk\n"
2586
+ ]
2587
+ },
2588
+ {
2589
+ "name": "stdout",
2590
+ "output_type": "stream",
2591
+ "text": [
2592
+ "7.0M / 10M\n",
2593
+ "8.0M / 10M\n",
2594
+ "9.0M / 10M\n",
2595
+ "10.0M / 10M\n",
2596
+ "trying to create_parquet\n",
2597
+ "\n",
2598
+ "1.0M / 10M\n",
2599
+ "2.0M / 10M\n",
2600
+ "3.0M / 10M\n",
2601
+ "4.0M / 10M\n",
2602
+ "5.0M / 10M\n",
2603
+ "6.0M / 10M\n",
2604
+ "7.0M / 10M\n",
2605
+ "8.0M / 10M\n",
2606
+ "9.0M / 10M\n",
2607
+ "10.0M / 10M\n",
2608
+ "trying to create_parquet\n",
2609
+ "\n",
2610
+ "1.0M / 10M\n",
2611
+ "2.0M / 10M\n",
2612
+ "3.0M / 10M\n",
2613
+ "4.0M / 10M\n",
2614
+ "5.0M / 10M\n",
2615
+ "6.0M / 10M\n",
2616
+ "7.0M / 10M\n",
2617
+ "8.0M / 10M\n",
2618
+ "9.0M / 10M\n",
2619
+ "10.0M / 10M\n",
2620
+ "trying to create_parquet\n",
2621
+ "\n",
2622
+ "1.0M / 10M\n",
2623
+ "2.0M / 10M\n",
2624
+ "3.0M / 10M\n",
2625
+ "4.0M / 10M\n",
2626
+ "5.0M / 10M\n",
2627
+ "6.0M / 10M\n",
2628
+ "7.0M / 10M\n",
2629
+ "8.0M / 10M\n",
2630
+ "9.0M / 10M\n",
2631
+ "10.0M / 10M\n",
2632
+ "trying to create_parquet\n",
2633
+ "\n",
2634
+ "1.0M / 10M\n",
2635
+ "2.0M / 10M\n",
2636
+ "3.0M / 10M\n",
2637
+ "4.0M / 10M\n",
2638
+ "5.0M / 10M\n",
2639
+ "6.0M / 10M\n",
2640
+ "7.0M / 10M\n",
2641
+ "8.0M / 10M\n",
2642
+ "9.0M / 10M\n",
2643
+ "10.0M / 10M\n",
2644
+ "trying to create_parquet\n",
2645
+ "\n",
2646
+ "1.0M / 10M\n",
2647
+ "2.0M / 10M\n",
2648
+ "3.0M / 10M\n",
2649
+ "4.0M / 10M\n",
2650
+ "5.0M / 10M\n",
2651
+ "6.0M / 10M\n",
2652
+ "7.0M / 10M\n",
2653
+ "8.0M / 10M\n",
2654
+ "9.0M / 10M\n",
2655
+ "10.0M / 10M\n",
2656
+ "trying to create_parquet\n",
2657
+ "\n",
2658
+ "1.0M / 10M\n",
2659
+ "2.0M / 10M\n",
2660
+ "3.0M / 10M\n",
2661
+ "4.0M / 10M\n",
2662
+ "5.0M / 10M\n"
2663
+ ]
2664
+ },
2665
+ {
2666
+ "name": "stderr",
2667
+ "output_type": "stream",
2668
+ "text": [
2669
+ "Decoding error with 134,217,728 bytes, reading another chunk\n",
2670
+ "Decoding error with 134,217,728 bytes, reading another chunk\n"
2671
+ ]
2672
+ },
2673
+ {
2674
+ "name": "stdout",
2675
+ "output_type": "stream",
2676
+ "text": [
2677
+ "6.0M / 10M\n",
2678
+ "7.0M / 10M\n",
2679
+ "8.0M / 10M\n",
2680
+ "9.0M / 10M\n"
2681
+ ]
2682
+ },
2683
+ {
2684
+ "name": "stderr",
2685
+ "output_type": "stream",
2686
+ "text": [
2687
+ "Decoding error with 134,217,728 bytes, reading another chunk\n",
2688
+ "Decoding error with 134,217,728 bytes, reading another chunk\n"
2689
+ ]
2690
+ },
2691
+ {
2692
+ "name": "stdout",
2693
+ "output_type": "stream",
2694
+ "text": [
2695
+ "10.0M / 10M\n",
2696
+ "trying to create_parquet\n",
2697
+ "\n",
2698
+ "1.0M / 10M\n",
2699
+ "2.0M / 10M\n",
2700
+ "3.0M / 10M\n"
2701
+ ]
2702
+ },
2703
+ {
2704
+ "name": "stderr",
2705
+ "output_type": "stream",
2706
+ "text": [
2707
+ "Decoding error with 134,217,728 bytes, reading another chunk\n",
2708
+ "Decoding error with 134,217,728 bytes, reading another chunk\n"
2709
+ ]
2710
+ },
2711
+ {
2712
+ "name": "stdout",
2713
+ "output_type": "stream",
2714
+ "text": [
2715
+ "4.0M / 10M\n",
2716
+ "5.0M / 10M\n",
2717
+ "6.0M / 10M\n",
2718
+ "7.0M / 10M\n",
2719
+ "8.0M / 10M\n",
2720
+ "9.0M / 10M\n",
2721
+ "10.0M / 10M\n",
2722
+ "trying to create_parquet\n",
2723
+ "\n",
2724
+ "1.0M / 10M\n",
2725
+ "2.0M / 10M\n",
2726
+ "3.0M / 10M\n",
2727
+ "4.0M / 10M\n",
2728
+ "5.0M / 10M\n",
2729
+ "6.0M / 10M\n",
2730
+ "7.0M / 10M\n",
2731
+ "8.0M / 10M\n",
2732
+ "9.0M / 10M\n",
2733
+ "10.0M / 10M\n",
2734
+ "trying to create_parquet\n",
2735
+ "\n",
2736
+ "1.0M / 10M\n",
2737
+ "2.0M / 10M\n",
2738
+ "3.0M / 10M\n",
2739
+ "4.0M / 10M\n",
2740
+ "5.0M / 10M\n",
2741
+ "6.0M / 10M\n",
2742
+ "7.0M / 10M\n",
2743
+ "8.0M / 10M\n",
2744
+ "9.0M / 10M\n",
2745
+ "10.0M / 10M\n",
2746
+ "trying to create_parquet\n",
2747
+ "\n",
2748
+ "1.0M / 10M\n",
2749
+ "2.0M / 10M\n",
2750
+ "3.0M / 10M\n",
2751
+ "4.0M / 10M\n",
2752
+ "5.0M / 10M\n",
2753
+ "6.0M / 10M\n",
2754
+ "7.0M / 10M\n",
2755
+ "12/12\n",
2756
+ "1.0M / 10M\n",
2757
+ "2.0M / 10M\n",
2758
+ "3.0M / 10M\n",
2759
+ "4.0M / 10M\n",
2760
+ "5.0M / 10M\n",
2761
+ "6.0M / 10M\n",
2762
+ "7.0M / 10M\n",
2763
+ "8.0M / 10M\n",
2764
+ "9.0M / 10M\n",
2765
+ "10.0M / 10M\n",
2766
+ "trying to create_parquet\n",
2767
+ "\n",
2768
+ "1.0M / 10M\n",
2769
+ "2.0M / 10M\n"
2770
+ ]
2771
+ },
2772
+ {
2773
+ "name": "stderr",
2774
+ "output_type": "stream",
2775
+ "text": [
2776
+ "Decoding error with 134,217,728 bytes, reading another chunk\n",
2777
+ "Decoding error with 134,217,728 bytes, reading another chunk\n"
2778
+ ]
2779
+ },
2780
+ {
2781
+ "name": "stdout",
2782
+ "output_type": "stream",
2783
+ "text": [
2784
+ "3.0M / 10M\n",
2785
+ "4.0M / 10M\n",
2786
+ "5.0M / 10M\n",
2787
+ "6.0M / 10M\n",
2788
+ "7.0M / 10M\n",
2789
+ "8.0M / 10M\n",
2790
+ "9.0M / 10M\n",
2791
+ "10.0M / 10M\n",
2792
+ "trying to create_parquet\n",
2793
+ "\n",
2794
+ "1.0M / 10M\n",
2795
+ "2.0M / 10M\n",
2796
+ "3.0M / 10M\n",
2797
+ "4.0M / 10M\n",
2798
+ "5.0M / 10M\n",
2799
+ "6.0M / 10M\n",
2800
+ "7.0M / 10M\n",
2801
+ "8.0M / 10M\n",
2802
+ "9.0M / 10M\n",
2803
+ "10.0M / 10M\n",
2804
+ "trying to create_parquet\n",
2805
+ "\n",
2806
+ "1.0M / 10M\n",
2807
+ "2.0M / 10M\n",
2808
+ "3.0M / 10M\n",
2809
+ "4.0M / 10M\n",
2810
+ "5.0M / 10M\n",
2811
+ "6.0M / 10M\n",
2812
+ "7.0M / 10M\n",
2813
+ "8.0M / 10M\n",
2814
+ "9.0M / 10M\n",
2815
+ "10.0M / 10M\n",
2816
+ "trying to create_parquet\n",
2817
+ "\n",
2818
+ "1.0M / 10M\n",
2819
+ "2.0M / 10M\n",
2820
+ "3.0M / 10M\n",
2821
+ "4.0M / 10M\n",
2822
+ "5.0M / 10M\n",
2823
+ "6.0M / 10M\n",
2824
+ "7.0M / 10M\n",
2825
+ "8.0M / 10M\n",
2826
+ "9.0M / 10M\n",
2827
+ "10.0M / 10M\n",
2828
+ "trying to create_parquet\n",
2829
+ "\n",
2830
+ "1.0M / 10M\n",
2831
+ "2.0M / 10M\n",
2832
+ "3.0M / 10M\n",
2833
+ "4.0M / 10M\n",
2834
+ "5.0M / 10M\n",
2835
+ "6.0M / 10M\n",
2836
+ "7.0M / 10M\n",
2837
+ "8.0M / 10M\n",
2838
+ "9.0M / 10M\n",
2839
+ "10.0M / 10M\n",
2840
+ "trying to create_parquet\n",
2841
+ "\n",
2842
+ "1.0M / 10M\n",
2843
+ "2.0M / 10M\n",
2844
+ "3.0M / 10M\n",
2845
+ "4.0M / 10M\n",
2846
+ "5.0M / 10M\n",
2847
+ "6.0M / 10M\n",
2848
+ "7.0M / 10M\n",
2849
+ "8.0M / 10M\n",
2850
+ "9.0M / 10M\n",
2851
+ "10.0M / 10M\n",
2852
+ "trying to create_parquet\n",
2853
+ "\n",
2854
+ "1.0M / 10M\n",
2855
+ "2.0M / 10M\n",
2856
+ "3.0M / 10M\n",
2857
+ "4.0M / 10M\n",
2858
+ "5.0M / 10M\n",
2859
+ "6.0M / 10M\n",
2860
+ "7.0M / 10M\n",
2861
+ "8.0M / 10M\n",
2862
+ "9.0M / 10M\n",
2863
+ "10.0M / 10M\n",
2864
+ "trying to create_parquet\n",
2865
+ "\n",
2866
+ "1.0M / 10M\n",
2867
+ "2.0M / 10M\n",
2868
+ "3.0M / 10M\n",
2869
+ "4.0M / 10M\n",
2870
+ "5.0M / 10M\n",
2871
+ "6.0M / 10M\n",
2872
+ "7.0M / 10M\n",
2873
+ "8.0M / 10M\n",
2874
+ "9.0M / 10M\n",
2875
+ "10.0M / 10M\n",
2876
+ "trying to create_parquet\n",
2877
+ "\n",
2878
+ "1.0M / 10M\n",
2879
+ "2.0M / 10M\n",
2880
+ "3.0M / 10M\n",
2881
+ "4.0M / 10M\n",
2882
+ "5.0M / 10M\n",
2883
+ "6.0M / 10M\n"
2884
+ ]
2885
+ },
2886
+ {
2887
+ "name": "stderr",
2888
+ "output_type": "stream",
2889
+ "text": [
2890
+ "Decoding error with 134,217,728 bytes, reading another chunk\n",
2891
+ "Decoding error with 134,217,728 bytes, reading another chunk\n"
2892
+ ]
2893
+ },
2894
+ {
2895
+ "name": "stdout",
2896
+ "output_type": "stream",
2897
+ "text": [
2898
+ "7.0M / 10M\n",
2899
+ "8.0M / 10M\n",
2900
+ "9.0M / 10M\n",
2901
+ "10.0M / 10M\n",
2902
+ "trying to create_parquet\n",
2903
+ "\n"
2904
+ ]
2905
+ },
2906
+ {
2907
+ "name": "stderr",
2908
+ "output_type": "stream",
2909
+ "text": [
2910
+ "Decoding error with 134,217,728 bytes, reading another chunk\n",
2911
+ "Decoding error with 134,217,728 bytes, reading another chunk\n"
2912
+ ]
2913
+ },
2914
+ {
2915
+ "name": "stdout",
2916
+ "output_type": "stream",
2917
+ "text": [
2918
+ "1.0M / 10M\n",
2919
+ "2.0M / 10M\n",
2920
+ "3.0M / 10M\n",
2921
+ "4.0M / 10M\n",
2922
+ "5.0M / 10M\n"
2923
+ ]
2924
+ },
2925
+ {
2926
+ "name": "stderr",
2927
+ "output_type": "stream",
2928
+ "text": [
2929
+ "Decoding error with 134,217,728 bytes, reading another chunk\n",
2930
+ "Decoding error with 134,217,728 bytes, reading another chunk\n"
2931
+ ]
2932
+ },
2933
+ {
2934
+ "name": "stdout",
2935
+ "output_type": "stream",
2936
+ "text": [
2937
+ "6.0M / 10M\n",
2938
+ "7.0M / 10M\n",
2939
+ "8.0M / 10M\n",
2940
+ "9.0M / 10M\n",
2941
+ "10.0M / 10M\n",
2942
+ "trying to create_parquet\n",
2943
+ "\n",
2944
+ "1.0M / 10M\n",
2945
+ "2.0M / 10M\n",
2946
+ "3.0M / 10M\n",
2947
+ "4.0M / 10M\n",
2948
+ "5.0M / 10M\n",
2949
+ "6.0M / 10M\n",
2950
+ "7.0M / 10M\n",
2951
+ "8.0M / 10M\n",
2952
+ "9.0M / 10M\n",
2953
+ "10.0M / 10M\n",
2954
+ "trying to create_parquet\n",
2955
+ "\n",
2956
+ "1.0M / 10M\n",
2957
+ "2.0M / 10M\n",
2958
+ "3.0M / 10M\n",
2959
+ "4.0M / 10M\n",
2960
+ "5.0M / 10M\n",
2961
+ "6.0M / 10M\n",
2962
+ "7.0M / 10M\n",
2963
+ "8.0M / 10M\n",
2964
+ "9.0M / 10M\n",
2965
+ "10.0M / 10M\n",
2966
+ "trying to create_parquet\n",
2967
+ "\n",
2968
+ "1.0M / 10M\n",
2969
+ "2.0M / 10M\n",
2970
+ "3.0M / 10M\n",
2971
+ "4.0M / 10M\n",
2972
+ "5.0M / 10M\n",
2973
+ "6.0M / 10M\n",
2974
+ "7.0M / 10M\n",
2975
+ "8.0M / 10M\n",
2976
+ "9.0M / 10M\n",
2977
+ "10.0M / 10M\n",
2978
+ "trying to create_parquet\n",
2979
+ "\n",
2980
+ "1.0M / 10M\n",
2981
+ "2.0M / 10M\n",
2982
+ "3.0M / 10M\n",
2983
+ "4.0M / 10M\n",
2984
+ "5.0M / 10M\n",
2985
+ "6.0M / 10M\n",
2986
+ "7.0M / 10M\n",
2987
+ "8.0M / 10M\n",
2988
+ "9.0M / 10M\n",
2989
+ "10.0M / 10M\n",
2990
+ "trying to create_parquet\n",
2991
+ "\n",
2992
+ "1.0M / 10M\n",
2993
+ "2.0M / 10M\n",
2994
+ "3.0M / 10M\n",
2995
+ "4.0M / 10M\n",
2996
+ "5.0M / 10M\n",
2997
+ "6.0M / 10M\n",
2998
+ "7.0M / 10M\n",
2999
+ "8.0M / 10M\n",
3000
+ "9.0M / 10M\n",
3001
+ "10.0M / 10M\n",
3002
+ "trying to create_parquet\n",
3003
+ "\n",
3004
+ "1.0M / 10M\n",
3005
+ "2.0M / 10M\n",
3006
+ "3.0M / 10M\n"
3007
+ ]
3008
+ }
3009
+ ],
3010
+ "source": [
3011
+ "for i, file_path in enumerate(filepaths):\n",
3012
+ "\tfile_counter = 1\n",
3013
+ "\tprint(f'{i+1}/{len(filepaths)}')\n",
3014
+ "\tfile = Path(file_path)\n",
3015
+ "\trecords = map(json.loads, read_lines_zst(file))\n",
3016
+ "\tdatas = []\n",
3017
+ "\tfor record in records:\n",
3018
+ "\t\tif len(record.get('body')) > 30:\n",
3019
+ "\t\t\tdatas.append((str(record.get('subreddit')), str(record.get('created_utc')),str(record.get('score')),str(record.get('body'))))\n",
3020
+ "\t\t\tif len(datas) % 1000000 == 0:\n",
3021
+ "\t\t\t\tprint(f\"{len(datas)/1000000}M / 10M\")\n",
3022
+ "\t\t\t\t#print(f'{sys.getsizeof(datas) / (1024 * 1024)} MegaBytes')\n",
3023
+ "\t\tif len(datas) > 10000000:\n",
3024
+ "\t\t\tdf = pd.DataFrame(datas)\n",
3025
+ "\t\t\tdf = df.rename(columns={0:'subreddit', 1:'created_utc', 2:'score', 3:'body'})\n",
3026
+ "\t\t\tprint(\"trying to create_parquet\")\n",
3027
+ "\t\t\tdf.to_parquet(f'{str(process_year) + os.sep}{file_path.split(os.sep)[-1].replace(\".zst\",\"\")}_{file_counter}.parquet')\n",
3028
+ "\t\t\tfile_counter +=1\n",
3029
+ "\t\t\tprint()\n",
3030
+ "\t\t\tdatas = []\n",
3031
+ "\t\t\n",
3032
+ "\tdf = pd.DataFrame(datas)\n",
3033
+ "\tdf = df.rename(columns={0:'subreddit', 1:'created_utc', 2:'score', 3:'body'})\n",
3034
+ "\tdf.to_parquet(f'{str(process_year) + os.sep}{file_path.split(os.sep)[-1].replace(\".zst\",\"\")}_{file_counter}.parquet') \n",
3035
+ "\n",
3036
+ "\t\t"
3037
+ ]
3038
+ },
3039
+ {
3040
+ "cell_type": "code",
3041
+ "execution_count": null,
3042
+ "metadata": {},
3043
+ "outputs": [],
3044
+ "source": [
3045
+ "# this is an example of loading and iterating over a single file\n",
3046
+ "\n",
3047
+ "import zstandard\n",
3048
+ "import os\n",
3049
+ "import json\n",
3050
+ "import sys\n",
3051
+ "from datetime import datetime\n",
3052
+ "import logging.handlers\n",
3053
+ "\n",
3054
+ "\n",
3055
+ "log = logging.getLogger(\"bot\")\n",
3056
+ "log.setLevel(logging.DEBUG)\n",
3057
+ "log.addHandler(logging.StreamHandler())\n",
3058
+ "\n",
3059
+ "\n",
3060
+ "def read_and_decode(reader, chunk_size, max_window_size, previous_chunk=None, bytes_read=0):\n",
3061
+ "\tchunk = reader.read(chunk_size)\n",
3062
+ "\tbytes_read += chunk_size\n",
3063
+ "\tif previous_chunk is not None:\n",
3064
+ "\t\tchunk = previous_chunk + chunk\n",
3065
+ "\ttry:\n",
3066
+ "\t\treturn chunk.decode()\n",
3067
+ "\texcept UnicodeDecodeError:\n",
3068
+ "\t\tif bytes_read > max_window_size:\n",
3069
+ "\t\t\traise UnicodeError(f\"Unable to decode frame after reading {bytes_read:,} bytes\")\n",
3070
+ "\t\tlog.info(f\"Decoding error with {bytes_read:,} bytes, reading another chunk\")\n",
3071
+ "\t\treturn read_and_decode(reader, chunk_size, max_window_size, chunk, bytes_read)\n",
3072
+ "\n",
3073
+ "\n",
3074
+ "def read_lines_zst(file_name):\n",
3075
+ "\twith open(file_name, 'rb') as file_handle:\n",
3076
+ "\t\tbuffer = ''\n",
3077
+ "\t\treader = zstandard.ZstdDecompressor(max_window_size=2**31).stream_reader(file_handle)\n",
3078
+ "\t\t#reader.read(40000000000)\n",
3079
+ "\t\twhile True:\n",
3080
+ "\t\t\tchunk = read_and_decode(reader, 2**27, (2**29) * 2)\n",
3081
+ "\n",
3082
+ "\t\t\tif not chunk:\n",
3083
+ "\t\t\t\tbreak\n",
3084
+ "\t\t\tlines = (buffer + chunk).split(\"\\n\")\n",
3085
+ "\n",
3086
+ "\t\t\tfor line in lines[:-1]:\n",
3087
+ "\t\t\t\tyield line, file_handle.tell()\n",
3088
+ "\n",
3089
+ "\t\t\tbuffer = lines[-1]\n",
3090
+ "\n",
3091
+ "\t\treader.close()\n",
3092
+ "\n",
3093
+ "\n",
3094
+ "if __name__ == \"__main__\":\n",
3095
+ "\tfile_path = sys.argv[1]\n",
3096
+ "\tfile_size = os.stat(file_path).st_size\n",
3097
+ "\tfile_lines = 0\n",
3098
+ "\tfile_bytes_processed = 0\n",
3099
+ "\tcreated = None\n",
3100
+ "\tfield = \"subreddit\"\n",
3101
+ "\tvalue = \"wallstreetbets\"\n",
3102
+ "\tbad_lines = 0\n",
3103
+ "\t# try:\n",
3104
+ "\tfor line, file_bytes_processed in read_lines_zst(file_path):\n",
3105
+ "\t\ttry:\n",
3106
+ "\t\t\tobj = json.loads(line)\n",
3107
+ "\t\t\tcreated = datetime.utcfromtimestamp(int(obj['created_utc']))\n",
3108
+ "\t\t\ttemp = obj[field] == value\n",
3109
+ "\t\texcept (KeyError, json.JSONDecodeError) as err:\n",
3110
+ "\t\t\tbad_lines += 1\n",
3111
+ "\t\tfile_lines += 1\n",
3112
+ "\t\tif file_lines % 100000 == 0:\n",
3113
+ "\t\t\tlog.info(f\"{created.strftime('%Y-%m-%d %H:%M:%S')} : {file_lines:,} : {bad_lines:,} : {file_bytes_processed:,}:{(file_bytes_processed / file_size) * 100:.0f}%\")\n",
3114
+ "\n",
3115
+ "\t# except Exception as err:\n",
3116
+ "\t# \tlog.info(err)\n",
3117
+ "\n",
3118
+ "\tlog.info(f\"Complete : {file_lines:,} : {bad_lines:,}\")"
3119
+ ]
3120
+ }
3121
+ ],
3122
+ "metadata": {
3123
+ "kernelspec": {
3124
+ "display_name": "Python 3.9.15 ('redditEnv')",
3125
+ "language": "python",
3126
+ "name": "python3"
3127
+ },
3128
+ "language_info": {
3129
+ "codemirror_mode": {
3130
+ "name": "ipython",
3131
+ "version": 3
3132
+ },
3133
+ "file_extension": ".py",
3134
+ "mimetype": "text/x-python",
3135
+ "name": "python",
3136
+ "nbconvert_exporter": "python",
3137
+ "pygments_lexer": "ipython3",
3138
+ "version": "3.9.15"
3139
+ },
3140
+ "orig_nbformat": 4,
3141
+ "vscode": {
3142
+ "interpreter": {
3143
+ "hash": "ef741df2a7755d2d639440173889a3c1405e2c4dc3663c5e25a76822c200d193"
3144
+ }
3145
+ }
3146
+ },
3147
+ "nbformat": 4,
3148
+ "nbformat_minor": 2
3149
+ }
unzip_files.ipynb ADDED
@@ -0,0 +1,312 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "code",
5
+ "execution_count": 1,
6
+ "metadata": {},
7
+ "outputs": [
8
+ {
9
+ "name": "stdout",
10
+ "output_type": "stream",
11
+ "text": [
12
+ "4 10\n",
13
+ "10 4\n"
14
+ ]
15
+ }
16
+ ],
17
+ "source": [
18
+ "for a in range(1, 54):\n",
19
+ " for b in range(1, 54):\n",
20
+ " if a + a * b + b == 54:\n",
21
+ " print(a, b)"
22
+ ]
23
+ },
24
+ {
25
+ "cell_type": "code",
26
+ "execution_count": 6,
27
+ "metadata": {},
28
+ "outputs": [],
29
+ "source": [
30
+ "import os\n",
31
+ "folder_to_process = '2007'\n",
32
+ "\n",
33
+ "\n",
34
+ "paths = [os.getcwd() + os.sep + folder_to_process + os.sep + path for path in os.listdir(os.getcwd() + os.sep + folder_to_process) if path.endswith('.zst')]"
35
+ ]
36
+ },
37
+ {
38
+ "cell_type": "code",
39
+ "execution_count": 7,
40
+ "metadata": {},
41
+ "outputs": [
42
+ {
43
+ "name": "stderr",
44
+ "output_type": "stream",
45
+ "text": [
46
+ "/mnt/i/NLP_Datasets/Reddit/2007/RC_2007-01.zst: 47009336 bytes \n",
47
+ "/mnt/i/NLP_Datasets/Reddit/2007/RC_2007-02.zst: 54750951 bytes \n",
48
+ "/mnt/i/NLP_Datasets/Reddit/2007/RC_2007-03.zst: 62820356 bytes \n",
49
+ "/mnt/i/NLP_Datasets/Reddit/2007/RC_2007-04.zst: 69786867 bytes \n",
50
+ "/mnt/i/NLP_Datasets/Reddit/2007/RC_2007-05.zst: 94461864 bytes \n",
51
+ "/mnt/i/NLP_Datasets/Reddit/2007/RC_2007-06.zst: 98423333 bytes \n",
52
+ "/mnt/i/NLP_Datasets/Reddit/2007/RC_2007-07.zst: 112766139 bytes \n",
53
+ "/mnt/i/NLP_Datasets/Reddit/2007/RC_2007-08.zst: 122574379 bytes \n",
54
+ "/mnt/i/NLP_Datasets/Reddit/2007/RC_2007-09.zst: 142766226 bytes \n",
55
+ "/mnt/i/NLP_Datasets/Reddit/2007/RC_2007-10.zst: 151656689 bytes \n",
56
+ "/mnt/i/NLP_Datasets/Reddit/2007/RC_2007-11.zst: 210899837 bytes \n",
57
+ "/mnt/i/NLP_Datasets/Reddit/2007/RC_2007-12.zst: 214817048 bytes \n"
58
+ ]
59
+ }
60
+ ],
61
+ "source": [
62
+ "for path in paths:\n",
63
+ " os.system(f'unzstd -f {path} --memory=2048MB')"
64
+ ]
65
+ },
66
+ {
67
+ "cell_type": "code",
68
+ "execution_count": 8,
69
+ "metadata": {},
70
+ "outputs": [],
71
+ "source": [
72
+ "import os\n",
73
+ "folder_to_process = '2008'\n",
74
+ "\n",
75
+ "\n",
76
+ "paths = [os.getcwd() + os.sep + folder_to_process + os.sep + path for path in os.listdir(os.getcwd() + os.sep + folder_to_process) if path.endswith('.zst')]"
77
+ ]
78
+ },
79
+ {
80
+ "cell_type": "code",
81
+ "execution_count": 9,
82
+ "metadata": {},
83
+ "outputs": [
84
+ {
85
+ "name": "stderr",
86
+ "output_type": "stream",
87
+ "text": [
88
+ "/mnt/i/NLP_Datasets/Reddit/2008/RC_2008-01.zst: 263972619 bytes \n",
89
+ "/mnt/i/NLP_Datasets/Reddit/2008/RC_2008-02.zst: 256564276 bytes \n",
90
+ "/mnt/i/NLP_Datasets/Reddit/2008/RC_2008-03.zst: 267934549 bytes \n",
91
+ "/mnt/i/NLP_Datasets/Reddit/2008/RC_2008-04.zst: 272655574 bytes \n",
92
+ "/mnt/i/NLP_Datasets/Reddit/2008/RC_2008-05.zst: 310404232 bytes \n",
93
+ "/mnt/i/NLP_Datasets/Reddit/2008/RC_2008-06.zst: 336060719 bytes \n",
94
+ "/mnt/i/NLP_Datasets/Reddit/2008/RC_2008-07.zst: 346089066 bytes \n",
95
+ "/mnt/i/NLP_Datasets/Reddit/2008/RC_2008-10.zst: 456690506 bytes \n",
96
+ "/mnt/i/NLP_Datasets/Reddit/2008/RC_2008-11.zst: 454923167 bytes \n",
97
+ "/mnt/i/NLP_Datasets/Reddit/2008/RC_2008-12.zst: 490644703 bytes \n"
98
+ ]
99
+ }
100
+ ],
101
+ "source": [
102
+ "for path in paths:\n",
103
+ " os.system(f'unzstd -f {path} --memory=2048MB')"
104
+ ]
105
+ },
106
+ {
107
+ "cell_type": "code",
108
+ "execution_count": 10,
109
+ "metadata": {},
110
+ "outputs": [],
111
+ "source": [
112
+ "import os\n",
113
+ "folder_to_process = '2009'\n",
114
+ "\n",
115
+ "\n",
116
+ "paths = [os.getcwd() + os.sep + folder_to_process + os.sep + path for path in os.listdir(os.getcwd() + os.sep + folder_to_process) if path.endswith('.zst')]"
117
+ ]
118
+ },
119
+ {
120
+ "cell_type": "code",
121
+ "execution_count": 11,
122
+ "metadata": {},
123
+ "outputs": [
124
+ {
125
+ "name": "stderr",
126
+ "output_type": "stream",
127
+ "text": [
128
+ "/mnt/i/NLP_Datasets/Reddit/2009/RC_2008-08.zst: 346626502 bytes \n",
129
+ "/mnt/i/NLP_Datasets/Reddit/2009/RC_2008-09.zst: 396060313 bytes \n",
130
+ "/mnt/i/NLP_Datasets/Reddit/2009/RC_2009-01.zst: 608871484 bytes \n",
131
+ "/mnt/i/NLP_Datasets/Reddit/2009/RC_2009-02.zst: 549556409 bytes \n",
132
+ "/mnt/i/NLP_Datasets/Reddit/2009/RC_2009-03.zst: 615767139 bytes \n",
133
+ "/mnt/i/NLP_Datasets/Reddit/2009/RC_2009-04.zst: 641521564 bytes \n",
134
+ "/mnt/i/NLP_Datasets/Reddit/2009/RC_2009-05.zst: 712627459 bytes \n",
135
+ "/mnt/i/NLP_Datasets/Reddit/2009/RC_2009-06.zst: 749303499 bytes \n",
136
+ "/mnt/i/NLP_Datasets/Reddit/2009/RC_2009-07.zst: 873978527 bytes \n",
137
+ "/mnt/i/NLP_Datasets/Reddit/2009/RC_2009-08.zst: 1038515234 bytes \n",
138
+ "/mnt/i/NLP_Datasets/Reddit/2009/RC_2009-09.zst: 1192147453 bytes \n",
139
+ "/mnt/i/NLP_Datasets/Reddit/2009/RC_2009-10.zst: 1332958320 bytes \n",
140
+ "/mnt/i/NLP_Datasets/Reddit/2009/RC_2009-11.zst: 1307127106 bytes \n",
141
+ "/mnt/i/NLP_Datasets/Reddit/2009/RC_2009-12.zst: 1505204158 bytes \n"
142
+ ]
143
+ }
144
+ ],
145
+ "source": [
146
+ "for path in paths:\n",
147
+ " os.system(f'unzstd -f {path} --memory=2048MB')"
148
+ ]
149
+ },
150
+ {
151
+ "cell_type": "code",
152
+ "execution_count": 12,
153
+ "metadata": {},
154
+ "outputs": [],
155
+ "source": [
156
+ "import os\n",
157
+ "folder_to_process = '2010'\n",
158
+ "\n",
159
+ "\n",
160
+ "paths = [os.getcwd() + os.sep + folder_to_process + os.sep + path for path in os.listdir(os.getcwd() + os.sep + folder_to_process) if path.endswith('.zst')]"
161
+ ]
162
+ },
163
+ {
164
+ "cell_type": "code",
165
+ "execution_count": 13,
166
+ "metadata": {},
167
+ "outputs": [
168
+ {
169
+ "name": "stderr",
170
+ "output_type": "stream",
171
+ "text": [
172
+ "/mnt/i/NLP_Datasets/Reddit/2010/RC_2010-01.zst: 1695673319 bytes \n",
173
+ "/mnt/i/NLP_Datasets/Reddit/2010/RC_2010-02.zst: 1591797299 bytes \n",
174
+ "/mnt/i/NLP_Datasets/Reddit/2010/RC_2010-03.zst: 1899665475 bytes \n",
175
+ "/mnt/i/NLP_Datasets/Reddit/2010/RC_2010-04.zst: 1875866199 bytes \n",
176
+ "/mnt/i/NLP_Datasets/Reddit/2010/RC_2010-05.zst: 1904296459 bytes \n",
177
+ "/mnt/i/NLP_Datasets/Reddit/2010/RC_2010-06.zst: 2055584210 bytes \n",
178
+ "/mnt/i/NLP_Datasets/Reddit/2010/RC_2010-07.zst: 2358254228 bytes \n",
179
+ "/mnt/i/NLP_Datasets/Reddit/2010/RC_2010-08.zst: 2481119668 bytes \n",
180
+ "/mnt/i/NLP_Datasets/Reddit/2010/RC_2010-09.zst: 2737071492 bytes \n",
181
+ "/mnt/i/NLP_Datasets/Reddit/2010/RC_2010-10.zst: 2943831426 bytes \n",
182
+ "/mnt/i/NLP_Datasets/Reddit/2010/RC_2010-11.zst: 3320232097 bytes \n",
183
+ "/mnt/i/NLP_Datasets/Reddit/2010/RC_2010-12.zst: 3487464031 bytes \n"
184
+ ]
185
+ }
186
+ ],
187
+ "source": [
188
+ "for path in paths:\n",
189
+ " os.system(f'unzstd -f {path} --memory=2048MB')"
190
+ ]
191
+ },
192
+ {
193
+ "cell_type": "code",
194
+ "execution_count": null,
195
+ "metadata": {},
196
+ "outputs": [],
197
+ "source": []
198
+ },
199
+ {
200
+ "cell_type": "code",
201
+ "execution_count": 15,
202
+ "metadata": {},
203
+ "outputs": [],
204
+ "source": [
205
+ "import os\n",
206
+ "folder_to_process = '2011'\n",
207
+ "\n",
208
+ "\n",
209
+ "paths = [os.getcwd() + os.sep + folder_to_process + os.sep + path for path in os.listdir(os.getcwd() + os.sep + folder_to_process) if path.endswith('.zst')]"
210
+ ]
211
+ },
212
+ {
213
+ "cell_type": "code",
214
+ "execution_count": 16,
215
+ "metadata": {},
216
+ "outputs": [
217
+ {
218
+ "name": "stderr",
219
+ "output_type": "stream",
220
+ "text": [
221
+ "/mnt/i/NLP_Datasets/Reddit/2011/RC_2011-01.zst: 3860744761 bytes \n",
222
+ "/mnt/i/NLP_Datasets/Reddit/2011/RC_2011-02.zst: 3724523696 bytes \n",
223
+ "/mnt/i/NLP_Datasets/Reddit/2011/RC_2011-03.zst: 4421426090 bytes \n",
224
+ "/mnt/i/NLP_Datasets/Reddit/2011/RC_2011-04.zst: 4374806147 bytes \n",
225
+ "/mnt/i/NLP_Datasets/Reddit/2011/RC_2011-05.zst: 5074030848 bytes \n",
226
+ "/mnt/i/NLP_Datasets/Reddit/2011/RC_2011-06.zst: 5624078921 bytes \n",
227
+ "/mnt/i/NLP_Datasets/Reddit/2011/RC_2011-07.zst: 6043941589 bytes \n",
228
+ "/mnt/i/NLP_Datasets/Reddit/2011/RC_2011-08.zst: 7025139374 bytes \n",
229
+ "/mnt/i/NLP_Datasets/Reddit/2011/RC_2011-09.zst: 6942023341 bytes \n",
230
+ "/mnt/i/NLP_Datasets/Reddit/2011/RC_2011-10.zst: 7730112702 bytes \n",
231
+ "/mnt/i/NLP_Datasets/Reddit/2011/RC_2011-11.zst: 7817968596 bytes \n",
232
+ "/mnt/i/NLP_Datasets/Reddit/2011/RC_2011-12.zst: 8311199150 bytes \n"
233
+ ]
234
+ }
235
+ ],
236
+ "source": [
237
+ "for path in paths:\n",
238
+ " os.system(f'unzstd -f {path} --memory=2048MB')"
239
+ ]
240
+ },
241
+ {
242
+ "cell_type": "code",
243
+ "execution_count": 2,
244
+ "metadata": {},
245
+ "outputs": [
246
+ {
247
+ "name": "stdout",
248
+ "output_type": "stream",
249
+ "text": [
250
+ "i:\\NLP_Datasets\\Reddit\\2012\\RC_2011-12.zst\n",
251
+ "i:\\NLP_Datasets\\Reddit\\2012\\RC_2012-01.zst\n",
252
+ "i:\\NLP_Datasets\\Reddit\\2012\\RC_2012-02.zst\n",
253
+ "i:\\NLP_Datasets\\Reddit\\2012\\RC_2012-03.zst\n",
254
+ "i:\\NLP_Datasets\\Reddit\\2012\\RC_2012-04.zst\n",
255
+ "i:\\NLP_Datasets\\Reddit\\2012\\RC_2012-05.zst\n",
256
+ "i:\\NLP_Datasets\\Reddit\\2012\\RC_2012-06.zst\n",
257
+ "i:\\NLP_Datasets\\Reddit\\2012\\RC_2012-07.zst\n",
258
+ "i:\\NLP_Datasets\\Reddit\\2012\\RC_2012-08.zst\n",
259
+ "i:\\NLP_Datasets\\Reddit\\2012\\RC_2012-09.zst\n",
260
+ "i:\\NLP_Datasets\\Reddit\\2012\\RC_2012-10.zst\n",
261
+ "i:\\NLP_Datasets\\Reddit\\2012\\RC_2012-11.zst\n"
262
+ ]
263
+ }
264
+ ],
265
+ "source": [
266
+ "import os\n",
267
+ "folder_to_process = '2012'\n",
268
+ "\n",
269
+ "\n",
270
+ "paths = [os.getcwd() + os.sep + folder_to_process + os.sep + path for path in os.listdir(os.getcwd() + os.sep + folder_to_process) if path.endswith('.zst')]\n",
271
+ "\n",
272
+ "for path in paths:\n",
273
+ " print(path)\n",
274
+ " os.system(f'unzstd -f {path} --memory=2048MB')"
275
+ ]
276
+ },
277
+ {
278
+ "cell_type": "code",
279
+ "execution_count": null,
280
+ "metadata": {},
281
+ "outputs": [],
282
+ "source": []
283
+ }
284
+ ],
285
+ "metadata": {
286
+ "kernelspec": {
287
+ "display_name": "Python 3.9.15 ('redditEnv')",
288
+ "language": "python",
289
+ "name": "python3"
290
+ },
291
+ "language_info": {
292
+ "codemirror_mode": {
293
+ "name": "ipython",
294
+ "version": 3
295
+ },
296
+ "file_extension": ".py",
297
+ "mimetype": "text/x-python",
298
+ "name": "python",
299
+ "nbconvert_exporter": "python",
300
+ "pygments_lexer": "ipython3",
301
+ "version": "3.9.15"
302
+ },
303
+ "orig_nbformat": 4,
304
+ "vscode": {
305
+ "interpreter": {
306
+ "hash": "ef741df2a7755d2d639440173889a3c1405e2c4dc3663c5e25a76822c200d193"
307
+ }
308
+ }
309
+ },
310
+ "nbformat": 4,
311
+ "nbformat_minor": 2
312
+ }