|
from fastcore.basics import listify |
|
import unicodedata |
|
import unidecode |
|
from string import punctuation |
|
import html |
|
from itertools import groupby |
|
import fasttext |
|
import re |
|
|
|
control_char_regex = re.compile(r'[\r\n\t]+') |
|
url_regex = re.compile( |
|
r'((http|https)\:\/\/)?[a-zA-Z0-9\.\/\?\:@\-_=#]+\.([a-zA-Z]){2,6}([a-zA-Z0-9\.\&\/\?\:@\-_=#])*') |
|
username_regex = re.compile(r'(^|[^@\w])@(\w{1,15})\b') |
|
|
|
FASTTEXT_MODEL_PATH = 'lid.176.bin' |
|
fasttext_model = fasttext.load_model(FASTTEXT_MODEL_PATH) |
|
|
|
|
|
def fix_html(example): |
|
"From fastai: 'Fix messy things we've seen in documents'" |
|
tmp_ls = [] |
|
for e in listify(example['text']): |
|
e = e.replace('#39;', "'").replace('amp;', '&').replace('#146;', "'").replace('nbsp;', ' ').replace( |
|
'#36;', '$').replace('\\n', "\n").replace('quot;', "'").replace('<br />', "\n").replace( |
|
'\\"', '"').replace('<unk>', ' ').replace(' @.@ ', '.').replace(' @-@ ', '-').replace('...', ' …') |
|
tmp_ls.append(html.unescape(e)) |
|
|
|
example['text'] = tmp_ls |
|
return example |
|
|
|
|
|
def remove_control_char(example): |
|
tmp_ls = [] |
|
for e in listify(example['text']): |
|
tmp_ls.append(re.sub(control_char_regex, '.', e)) |
|
|
|
example['text'] = tmp_ls |
|
return example |
|
|
|
|
|
def remove_remaining_control_chars(example): |
|
tmp_ls = [] |
|
for e in listify(example['text']): |
|
tmp_ls.append( |
|
''.join(ch for ch in e if unicodedata.category(ch)[0] != 'C')) |
|
|
|
example['text'] = tmp_ls |
|
return example |
|
|
|
|
|
def remove_unicode_symbols(example): |
|
tmp_ls = [] |
|
for e in listify(example['text']): |
|
tmp_ls.append( |
|
''.join(ch for ch in e if unicodedata.category(ch)[0] != 'So')) |
|
|
|
example['text'] = tmp_ls |
|
return example |
|
|
|
|
|
def standardise_punc(example): |
|
transl_table = dict([(ord(x), ord(y)) |
|
for x, y in zip(u"‘’´“”–-", u"'''\"\"--")]) |
|
tmp_ls = [] |
|
for e in listify(example['text']): |
|
e = e.translate(transl_table) |
|
e = re.sub(r"[^a-zA-Z0-9ÖÄÅöäå .,'%&€$=*@+;<>/()!?%:-]", " ", e) |
|
tmp_ls.append(e) |
|
|
|
example['text'] = tmp_ls |
|
return example |
|
|
|
|
|
def remove_news_tags(example): |
|
tmp_ls = [] |
|
for e in listify(example['text']): |
|
e = re.sub(r"(<[A-Z].+?>)|(</[A-Z].+?>)", "", e) |
|
tmp_ls.append(e) |
|
|
|
example['text'] = tmp_ls |
|
return example |
|
|
|
|
|
def replace_urls(example): |
|
filler, tmp_ls = '', [] |
|
for e in listify(example['text']): |
|
e = re.sub(r"(<a.+?>)|(</a>)|(<ref.+?>)", "", e) |
|
e = re.sub(url_regex, filler, e) |
|
tmp_ls.append(e) |
|
|
|
example['text'] = tmp_ls |
|
return example |
|
|
|
|
|
def replace_usernames(example): |
|
filler, tmp_ls = '', [] |
|
for e in listify(example['text']): |
|
occ = e.count('@') |
|
for _ in range(occ): |
|
e = e.replace('@<user>', f'{filler}') |
|
|
|
e = re.sub(username_regex, filler, e) |
|
|
|
e = e.replace(filler, f' {filler} ') |
|
e = ' '.join(e.split()) |
|
tmp_ls.append(e) |
|
|
|
example['text'] = tmp_ls |
|
return example |
|
|
|
|
|
def remove_duplicate_words_punctuation(example): |
|
tmp_ls = [] |
|
for e in listify(example['text']): |
|
e = re.sub(r'\b(\w+)( \1\b)+', r'\1', e) |
|
punc = set(punctuation) |
|
newtext = [] |
|
for k, g in groupby(e): |
|
if k in punc: |
|
newtext.append(k) |
|
else: |
|
newtext.extend(g) |
|
e = ''.join(newtext) |
|
tmp_ls.append(e) |
|
|
|
example['text'] = tmp_ls |
|
return example |
|
|
|
|
|
def remove_multi_space(example): |
|
tmp_ls = [] |
|
for e in listify(example['text']): |
|
tmp_ls.append(' '.join(e.split())) |
|
|
|
example['text'] = tmp_ls |
|
return example |
|
|
|
|
|
def count_alphabet(batch): |
|
batch['alphabet_len'] = len(re.findall(r'[äÄöÖåÅa-zA-Z]', batch['text'])) |
|
return batch |
|
|
|
|
|
def count_numbers(batch): |
|
batch['number_len'] = len(re.findall(r'[0-9]', batch['text'])) |
|
return batch |
|
|
|
|
|
def count_upper(batch): |
|
batch['upper_len'] = len(re.findall(r'[ÄÖÅA-Z]', batch['text'])) |
|
return batch |
|
|
|
|
|
def count_str_len(batch): |
|
batch['total_len'] = len(batch['text']) |
|
return batch |
|
|
|
|
|
def predict_lang(batch): |
|
pred = fasttext_model.predict(batch['text']) |
|
batch['predicted_lang'] = pred[0][0] |
|
batch['predicted_lang_percentage'] = float(pred[1][0]) |
|
return batch |
|
|
|
|
|
def calculate_alphabet_ratio(batch): |
|
batch['alphabet_ratio'] = int( |
|
batch['alphabet_len']) / int(batch['total_len']) |
|
return batch |
|
|
|
|
|
def calculate_number_ratio(batch): |
|
batch['number_ratio'] = int(batch['number_len']) / int(batch['total_len']) |
|
return batch |
|
|
|
|
|
def calculate_upper_ratio(batch): |
|
batch['upper_ratio'] = int(batch['upper_len']) / int(batch['total_len']) |
|
return batch |
|
|