File size: 11,926 Bytes
9b78acf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 |
# -*- coding: utf-8 -*-
"""UEFA_Euro2020_Processing.ipynb
Automatically generated by Colaboratory.
Original file is located at
https://colab.research.google.com/drive/14eW1QiGXrszsqNFVKnT7WjDyDmxVuIve
"""
import pandas as pd
import numpy as np
from functools import reduce
match_events = pd.read_csv('/content/Match events.csv')
match_information = pd.read_csv('/content/Match information.csv')
match_line_up = pd.read_csv('/content/Match line-ups.csv')
match_player_stats = pd.read_csv('/content/player_stats.csv')
match_team_stats = pd.read_csv('/content/Match team statistics.csv')
pre_match_info = pd.read_csv('/content/Pre-match information.csv')
# impute the missing referee from CONMEBOL
match_information['RefereeWebName'] = match_information['RefereeWebName'].fillna("Rapallini")
# add columns that contain useful information for referee statistics
Euro2020_df = match_information.copy()
# add a stage variable to classify the matches
Euro2020_df.insert(loc=5, column = "Stage", value = np.where(Euro2020_df['MatchDay'] <= 3, 'Group Stage', 'Knockout Stage'))
# add varibles that contain useful statistics for referees
Euro2020_df.insert(loc=17, column='NumberofMatchesRefereedPostMatch',
value=Euro2020_df.groupby('RefereeWebName').cumcount().astype(int) + 1)
Euro2020_df.insert(loc=18, column='TotalNumberofMatchesRefereed',
value=Euro2020_df.groupby('RefereeWebName')['RefereeWebName'].transform('count').astype(int))
Euro2020_df.insert(loc=19, column = 'NumberofMatchesRefereedinGroupStage',
value = Euro2020_df.groupby('RefereeWebName')['Stage'].transform(lambda x: (x == 'Group Stage').sum()))
Euro2020_df.insert(loc=20, column = 'NumberofMatchesRefereedinKnockoutStage',
value = Euro2020_df.groupby('RefereeWebName')['Stage'].transform(lambda x: (x == 'Knockout Stage').sum()))
# create nested structures for match events
# Create a new DataFrame with only the columns needed for nesting
nested = match_events.iloc[:,[0] + list(range(3, 13))]
# Create another new df with only the separate columns
separate = match_events.iloc[:,0:3].drop_duplicates().set_index("MatchID")
# Group by 'MatchID' and 'Phase', create a nested structure for match events
nested_structure = (nested.groupby(['MatchID', 'Phase'])
.apply(lambda x: x.drop('MatchID', axis=1).to_dict('records'))
.reset_index(name='Events')
.pivot(index='MatchID', columns="Phase", values='Events'))
# Rename phases
phase_names = {
1: '1-First Half',
2: '2-Second Half',
3: '3-Extra Time First Half',
4: '4-Extra Time Second Half',
5: '5-Penalty Shootout'
}
nested_structure.rename(columns=phase_names, inplace=True)
# Combine the phase columns into one 'MatchEvent' column
nested_structure['MatchEvent'] = nested_structure.apply(lambda row: {phase: events for phase, events in row.items()}, axis=1)
# Drop the individual phase columns
nested_structure.drop(columns=phase_names.values(), inplace=True)
# Join the separate columns with the nested structure
nested_match_events = separate.join(nested_structure).reset_index()
nested_match_events = nested_match_events.drop(nested_match_events.columns[[1, 2]],axis=1)
# distinguish participants from the home and away teams in the line up dataset. Since only the pre_match_info
# df contains variables that distinguish home and away teams, need to combine both dfs and continue data processing.
line_up_merged = pd.merge(match_line_up, pre_match_info.iloc[:,[0,3,4,7]],
on=['MatchID','ID'], how='left')
# Create nested structures for the home and away team's line-ups in each match
# Variables for staff and players respectively
staff_vars = ['Country', 'ID', 'OfficialName', 'OfficialSurname', 'ShortName', 'Role']
player_vars = [col for col in line_up_merged.columns if col not in ['MatchID', 'HomeTeamName', 'AwayTeamName',
'IsPitch', 'IsBench', 'IsStaff', 'IsHomeTeam','IsAwayTeam']]
# Function to create nested structure for one team
def create_team_structure(x, is_home_team):
if is_home_team:
# Filter for home team players
squad_df = x[x['IsHomeTeam'] == True].copy()
else:
# Filter for away team players
squad_df = x[x['IsHomeTeam'] == False].copy()
# Starting 11
starting_11 = squad_df[squad_df['IsPitch']][player_vars]
# Benched players
benched_players = squad_df[squad_df['IsBench']][player_vars]
# Staff
staff = squad_df[squad_df['IsStaff']][staff_vars]
return {'Starting11': starting_11.to_dict('records'),
'Benched Players': benched_players.to_dict('records'),
'Staff': staff.to_dict('records')}
# Apply the function to each match for home and away teams
nested_line_up = line_up_merged.groupby('MatchID').apply(lambda line_up_merged: {
'HomeTeamLineUp': create_team_structure(line_up_merged, True),
'AwayTeamLineUp': create_team_structure(line_up_merged, False)
}).reset_index(name='TeamLineUps')
# create nested structures for team stats
# Firstly retrieve and classify all the team stats. Also explore the difference in elements of team stats
# player stats so that the classification on both could be easier.
team_unique = list(match_team_stats['StatsName'].unique())
print(team_unique)
player_unique = list(match_player_stats['StatsName'].unique())
print(player_unique)
set1 = set(team_unique)
set2 = set(player_unique)
# Find elements in list1 but not in list2
difference1 = set1 - set2
# Find elements in list2 but not in list1
difference2 = set2 - set1
# Convert the sets back to lists, if needed
diff_list1 = list(difference1)
diff_list2 = list(difference2)
print(diff_list1)
print(diff_list2)
# classify statistics
attacking = [team_unique[0]] + team_unique[2:8] + [team_unique[22]] + team_unique[24:56] + team_unique[58:74] + team_unique[93:106] + [team_unique[120]] + [team_unique[178]] + team_unique[182:184] + team_unique[186:189] + [team_unique[192]]
possession = [team_unique[1]] + team_unique[16:18] + [team_unique[56]] + team_unique[74:93] + team_unique[112:119]
violation_foul_discipline = [team_unique[8]] + team_unique[13:16] + team_unique[147:156]
goalkeeping = [team_unique[9]] + team_unique[125:146] + team_unique[189:191]
defending = team_unique[10:13] + [team_unique[21]] + [team_unique[23]] + team_unique[106:112] + [team_unique[119]] + team_unique[121:125]
coverage_speed = team_unique[18:21] + team_unique[156:169] + [team_unique[177]] + team_unique[179:181] + team_unique[184:186] + [team_unique[191]]
time_stats = [team_unique[57]] + [team_unique[146]] + team_unique[169:177]
matches_played = [team_unique[181]]
# check if the categories cover all team stats
set3 = set(attacking+possession+violation_foul_discipline+goalkeeping+defending+coverage_speed+time_stats+matches_played)
set4 = set(team_unique)
difff = list(set4-set3)
difff
# add unique stats for players to certain categories
player_time_stats = time_stats + [diff_list2[0]] + [diff_list2[2]] + [diff_list2[4]]
player_coverage_speed = coverage_speed + [diff_list2[1]] + [diff_list2[3]]
# assign category based on names for team stats
def assign_category(name):
if name in attacking:
return 'attacking'
elif name in possession:
return 'possession'
elif name in violation_foul_discipline:
return 'violation&foul&discipline'
elif name in goalkeeping:
return 'goalkeeping'
elif name in defending:
return 'defending'
elif name in coverage_speed or name in player_coverage_speed:
return 'coverage&speed'
elif name in time_stats or name in player_time_stats:
return 'time stats'
elif name in matches_played:
return 'matches played'
# Apply the function to create a new column 'Category' for both team stats and player stats
match_team_stats['StatsCategory'] = match_team_stats['StatsName'].apply(lambda name: assign_category(name))
match_player_stats['StatsCategory'] = match_player_stats['StatsName'].apply(lambda name: assign_category(name))
# create the nested structure for team stats
stats_details_cols = ['TeamID', 'TeamName', 'StatsID', 'StatsName', 'Value', 'Rank']
# Function to create nested stats by category
def nested_stats(group):
# Create nested structure for home and away team stats
home_stats = group[group['IsHomeTeam']]
away_stats = group[group['IsAwayTeam']]
# Function to create stats by category
def stats_by_category(team_stats):
return team_stats.groupby('StatsCategory')[stats_details_cols].apply(lambda x: x.to_dict('records')).to_dict()
# Create the nested stats dictionary
nested_stats_dict = {
'HomeTeamStats': stats_by_category(home_stats),
'AwayTeamStats': stats_by_category(away_stats)
}
return nested_stats_dict
# Group by 'MatchID' and apply the nested stats function
nested_team_stats = match_team_stats.groupby('MatchID').apply(nested_stats).reset_index(name='TeamStats')
# create the nested structure for player stats
player_stats_details = ['PlayerID', 'PlayerName', 'PlayerSurname', 'IsGoalkeeper', 'PlayedTime', 'StatsID', 'StatsName', 'Value', 'Rank']
pre_match = pre_match_info.copy()
pre_match.rename(columns={'ID': 'PlayerID'}, inplace=True)
player_stats_merged = pd.merge(match_player_stats, pre_match.iloc[:,[0,3,4,7]],
on=['MatchID','PlayerID'], how='left')
# Function to create nested stats by category
def nested_stats(group):
# Create nested structure for home and away team stats
home_stats = group[group['IsHomeTeam']]
away_stats = group[group['IsAwayTeam']]
# Function to create stats by category
def stats_by_category(player_stats):
return player_stats.groupby('StatsCategory')[player_stats_details].apply(lambda x: x.to_dict('records')).to_dict()
# Create the nested stats dictionary
nested_stats_dict = {
'HomeTeamPlayerStats': stats_by_category(home_stats),
'AwayTeamPlayerStats': stats_by_category(away_stats)
}
return nested_stats_dict
# Group by 'MatchID' and apply the nested stats function
nested_player_stats = player_stats_merged.groupby('MatchID').apply(nested_stats).reset_index(name='PlayerStats')
# create nested structure for pre match player info
players_info = pre_match[pre_match['IsStaff'] == False]
# Define the columns we want to include for each player
player_info_vars = ['PlayerID', 'OfficialName', 'OfficialSurname', 'JerseyName', 'ShortName', 'GoalScored', 'CleanSheet', 'SuspendedIfBooked', 'Role']
# Create nested structure
def create_player_structure(df, is_home_team):
# Filter for home or away team players
home_team_players = df[df['IsHomeTeam'] == is_home_team][player_info_vars]
# Create a list of dictionaries, one for each player
return home_team_players.to_dict('records')
# Construct the nested structure for the DataFrame
nested_structure = {
'MatchID': [],
'PlayerPreMatchInfo': []
}
for match_id, group in players_info.groupby('MatchID'):
nested_structure['MatchID'].append(match_id)
nested_structure['PlayerPreMatchInfo'].append({
'HomeTeamPlayerInfo': create_player_structure(group, True),
'AwayTeamPlayerInfo': create_player_structure(group, False)
})
# Convert the nested structure to a DataFrame
nested_player_pre_match_info = pd.DataFrame(nested_structure)
# merge all sub datasets with nested structures into the final df
all_dfs = [Euro2020_df,nested_match_events,nested_line_up,nested_team_stats,nested_player_stats,nested_player_pre_match_info]
# Using functools.reduce to merge all DataFrames
Euro2020_df_final = reduce(lambda left, right: pd.merge(left, right, on='MatchID', how='outer'), all_dfs)
Euro2020_df_final
Euro2020_df_final.to_csv('Euro2020.csv', index=False)
Euro2020_df_final.to_json('Euro2020.json', orient='records', lines=False)
Euro2020_df_final.to_parquet('Euro2020.parquet', index = False) |