File size: 11,926 Bytes
9b78acf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
# -*- coding: utf-8 -*-
"""UEFA_Euro2020_Processing.ipynb

Automatically generated by Colaboratory.

Original file is located at
    https://colab.research.google.com/drive/14eW1QiGXrszsqNFVKnT7WjDyDmxVuIve
"""

import pandas as pd
import numpy as np
from functools import reduce

match_events = pd.read_csv('/content/Match events.csv')
match_information = pd.read_csv('/content/Match information.csv')
match_line_up = pd.read_csv('/content/Match line-ups.csv')
match_player_stats = pd.read_csv('/content/player_stats.csv')
match_team_stats = pd.read_csv('/content/Match team statistics.csv')
pre_match_info = pd.read_csv('/content/Pre-match information.csv')

# impute the missing referee from CONMEBOL
match_information['RefereeWebName'] = match_information['RefereeWebName'].fillna("Rapallini")

# add columns that contain useful information for referee statistics
Euro2020_df = match_information.copy()

# add a stage variable to classify the matches

Euro2020_df.insert(loc=5, column = "Stage", value = np.where(Euro2020_df['MatchDay'] <= 3, 'Group Stage', 'Knockout Stage'))

# add varibles that contain useful statistics for referees

Euro2020_df.insert(loc=17, column='NumberofMatchesRefereedPostMatch',
     value=Euro2020_df.groupby('RefereeWebName').cumcount().astype(int) + 1)
Euro2020_df.insert(loc=18, column='TotalNumberofMatchesRefereed',
     value=Euro2020_df.groupby('RefereeWebName')['RefereeWebName'].transform('count').astype(int))

Euro2020_df.insert(loc=19, column = 'NumberofMatchesRefereedinGroupStage',
     value = Euro2020_df.groupby('RefereeWebName')['Stage'].transform(lambda x: (x == 'Group Stage').sum()))

Euro2020_df.insert(loc=20, column = 'NumberofMatchesRefereedinKnockoutStage',
     value = Euro2020_df.groupby('RefereeWebName')['Stage'].transform(lambda x: (x == 'Knockout Stage').sum()))

# create nested structures for match events

# Create a new DataFrame with only the columns needed for nesting
nested = match_events.iloc[:,[0] + list(range(3, 13))]

# Create another new df with only the separate columns
separate = match_events.iloc[:,0:3].drop_duplicates().set_index("MatchID")

# Group by 'MatchID' and 'Phase', create a nested structure for match events
nested_structure = (nested.groupby(['MatchID', 'Phase'])
          .apply(lambda x: x.drop('MatchID', axis=1).to_dict('records'))
          .reset_index(name='Events')
          .pivot(index='MatchID', columns="Phase", values='Events'))

# Rename phases
phase_names = {
    1: '1-First Half',
    2: '2-Second Half',
    3: '3-Extra Time First Half',
    4: '4-Extra Time Second Half',
    5: '5-Penalty Shootout'
}
nested_structure.rename(columns=phase_names, inplace=True)

# Combine the phase columns into one 'MatchEvent' column
nested_structure['MatchEvent'] = nested_structure.apply(lambda row: {phase: events for phase, events in row.items()}, axis=1)
# Drop the individual phase columns
nested_structure.drop(columns=phase_names.values(), inplace=True)
# Join the separate columns with the nested structure
nested_match_events = separate.join(nested_structure).reset_index()
nested_match_events = nested_match_events.drop(nested_match_events.columns[[1, 2]],axis=1)

# distinguish participants from the home and away teams in the line up dataset. Since only the pre_match_info
# df contains variables that distinguish home and away teams, need to combine both dfs and continue data processing.
line_up_merged = pd.merge(match_line_up, pre_match_info.iloc[:,[0,3,4,7]],
                          on=['MatchID','ID'], how='left')

# Create nested structures for the home and away team's line-ups in each match

# Variables for staff and players respectively
staff_vars = ['Country', 'ID', 'OfficialName', 'OfficialSurname', 'ShortName', 'Role']
player_vars = [col for col in line_up_merged.columns if col not in ['MatchID', 'HomeTeamName', 'AwayTeamName',
                              'IsPitch', 'IsBench', 'IsStaff', 'IsHomeTeam','IsAwayTeam']]

# Function to create nested structure for one team
def create_team_structure(x, is_home_team):
    if is_home_team:
        # Filter for home team players
        squad_df = x[x['IsHomeTeam'] == True].copy()
    else:
        # Filter for away team players
        squad_df = x[x['IsHomeTeam'] == False].copy()

    # Starting 11
    starting_11 = squad_df[squad_df['IsPitch']][player_vars]

    # Benched players
    benched_players = squad_df[squad_df['IsBench']][player_vars]

    # Staff
    staff = squad_df[squad_df['IsStaff']][staff_vars]

    return {'Starting11': starting_11.to_dict('records'),
            'Benched Players': benched_players.to_dict('records'),
            'Staff': staff.to_dict('records')}

# Apply the function to each match for home and away teams
nested_line_up = line_up_merged.groupby('MatchID').apply(lambda line_up_merged: {
    'HomeTeamLineUp': create_team_structure(line_up_merged, True),
    'AwayTeamLineUp': create_team_structure(line_up_merged, False)
}).reset_index(name='TeamLineUps')

# create nested structures for team stats

# Firstly retrieve and classify all the team stats. Also explore the difference in elements of team stats
# player stats so that the classification on both could be easier.
team_unique = list(match_team_stats['StatsName'].unique())
print(team_unique)

player_unique = list(match_player_stats['StatsName'].unique())
print(player_unique)

set1 = set(team_unique)
set2 = set(player_unique)

# Find elements in list1 but not in list2
difference1 = set1 - set2

# Find elements in list2 but not in list1
difference2 = set2 - set1

# Convert the sets back to lists, if needed
diff_list1 = list(difference1)
diff_list2 = list(difference2)

print(diff_list1)
print(diff_list2)

# classify statistics
attacking = [team_unique[0]] + team_unique[2:8] + [team_unique[22]] + team_unique[24:56] + team_unique[58:74] + team_unique[93:106] + [team_unique[120]] + [team_unique[178]] + team_unique[182:184] + team_unique[186:189] + [team_unique[192]]
possession = [team_unique[1]] + team_unique[16:18] + [team_unique[56]] + team_unique[74:93] + team_unique[112:119]
violation_foul_discipline = [team_unique[8]] + team_unique[13:16] + team_unique[147:156]
goalkeeping = [team_unique[9]] + team_unique[125:146] + team_unique[189:191]
defending = team_unique[10:13] + [team_unique[21]] + [team_unique[23]] + team_unique[106:112] + [team_unique[119]] + team_unique[121:125]
coverage_speed = team_unique[18:21] + team_unique[156:169] + [team_unique[177]] + team_unique[179:181] + team_unique[184:186] + [team_unique[191]]
time_stats = [team_unique[57]] + [team_unique[146]] + team_unique[169:177]
matches_played = [team_unique[181]]

# check if the categories cover all team stats
set3 = set(attacking+possession+violation_foul_discipline+goalkeeping+defending+coverage_speed+time_stats+matches_played)
set4 = set(team_unique)
difff = list(set4-set3)
difff

# add unique stats for players to certain categories

player_time_stats = time_stats + [diff_list2[0]] + [diff_list2[2]] + [diff_list2[4]]
player_coverage_speed = coverage_speed + [diff_list2[1]] + [diff_list2[3]]


# assign category based on names for team stats
def assign_category(name):
    if name in attacking:
        return 'attacking'
    elif name in possession:
        return 'possession'
    elif name in violation_foul_discipline:
        return 'violation&foul&discipline'
    elif name in goalkeeping:
        return 'goalkeeping'
    elif name in defending:
        return 'defending'
    elif name in coverage_speed or name in player_coverage_speed:
        return 'coverage&speed'
    elif name in time_stats or name in player_time_stats:
        return 'time stats'
    elif name in matches_played:
        return 'matches played'

# Apply the function to create a new column 'Category' for both team stats and player stats
match_team_stats['StatsCategory'] = match_team_stats['StatsName'].apply(lambda name: assign_category(name))
match_player_stats['StatsCategory'] = match_player_stats['StatsName'].apply(lambda name: assign_category(name))

# create the nested structure for team stats
stats_details_cols = ['TeamID', 'TeamName', 'StatsID', 'StatsName', 'Value', 'Rank']

# Function to create nested stats by category
def nested_stats(group):
    # Create nested structure for home and away team stats
    home_stats = group[group['IsHomeTeam']]
    away_stats = group[group['IsAwayTeam']]

    # Function to create stats by category
    def stats_by_category(team_stats):
        return team_stats.groupby('StatsCategory')[stats_details_cols].apply(lambda x: x.to_dict('records')).to_dict()

    # Create the nested stats dictionary
    nested_stats_dict = {
        'HomeTeamStats': stats_by_category(home_stats),
        'AwayTeamStats': stats_by_category(away_stats)
    }

    return nested_stats_dict

# Group by 'MatchID' and apply the nested stats function
nested_team_stats = match_team_stats.groupby('MatchID').apply(nested_stats).reset_index(name='TeamStats')

# create the nested structure for player stats
player_stats_details = ['PlayerID', 'PlayerName', 'PlayerSurname', 'IsGoalkeeper', 'PlayedTime', 'StatsID', 'StatsName', 'Value', 'Rank']

pre_match = pre_match_info.copy()
pre_match.rename(columns={'ID': 'PlayerID'}, inplace=True)
player_stats_merged = pd.merge(match_player_stats, pre_match.iloc[:,[0,3,4,7]],
                          on=['MatchID','PlayerID'], how='left')

# Function to create nested stats by category
def nested_stats(group):
    # Create nested structure for home and away team stats
    home_stats = group[group['IsHomeTeam']]
    away_stats = group[group['IsAwayTeam']]

    # Function to create stats by category
    def stats_by_category(player_stats):
        return player_stats.groupby('StatsCategory')[player_stats_details].apply(lambda x: x.to_dict('records')).to_dict()

    # Create the nested stats dictionary
    nested_stats_dict = {
        'HomeTeamPlayerStats': stats_by_category(home_stats),
        'AwayTeamPlayerStats': stats_by_category(away_stats)
    }

    return nested_stats_dict

# Group by 'MatchID' and apply the nested stats function
nested_player_stats = player_stats_merged.groupby('MatchID').apply(nested_stats).reset_index(name='PlayerStats')

# create nested structure for pre match player info
players_info = pre_match[pre_match['IsStaff'] == False]

# Define the columns we want to include for each player
player_info_vars = ['PlayerID', 'OfficialName', 'OfficialSurname', 'JerseyName', 'ShortName', 'GoalScored', 'CleanSheet', 'SuspendedIfBooked', 'Role']

# Create nested structure
def create_player_structure(df, is_home_team):
    # Filter for home or away team players
    home_team_players = df[df['IsHomeTeam'] == is_home_team][player_info_vars]
    # Create a list of dictionaries, one for each player
    return home_team_players.to_dict('records')

# Construct the nested structure for the DataFrame
nested_structure = {
    'MatchID': [],
    'PlayerPreMatchInfo': []
}

for match_id, group in players_info.groupby('MatchID'):
    nested_structure['MatchID'].append(match_id)
    nested_structure['PlayerPreMatchInfo'].append({
        'HomeTeamPlayerInfo': create_player_structure(group, True),
        'AwayTeamPlayerInfo': create_player_structure(group, False)
    })

# Convert the nested structure to a DataFrame
nested_player_pre_match_info = pd.DataFrame(nested_structure)

# merge all sub datasets with nested structures into the final df
all_dfs = [Euro2020_df,nested_match_events,nested_line_up,nested_team_stats,nested_player_stats,nested_player_pre_match_info]

# Using functools.reduce to merge all DataFrames
Euro2020_df_final = reduce(lambda left, right: pd.merge(left, right, on='MatchID', how='outer'), all_dfs)
Euro2020_df_final

Euro2020_df_final.to_csv('Euro2020.csv', index=False)

Euro2020_df_final.to_json('Euro2020.json', orient='records', lines=False)

Euro2020_df_final.to_parquet('Euro2020.parquet', index = False)