Francesco commited on
Commit
41d6561
1 Parent(s): 1f1576e

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +110 -14
README.md CHANGED
@@ -27,19 +27,115 @@ dataset_info:
27
  '2': Flower
28
  '3': Gravel
29
  '4': Sugar
30
- splits:
31
- - name: train
32
- num_bytes: 318259409.0
33
- num_examples: 3528
34
- - name: validation
35
- num_bytes: 45486486.0
36
- num_examples: 504
37
- - name: test
38
- num_bytes: 91321300.0
39
- num_examples: 1008
40
- download_size: 454979832
41
- dataset_size: 455067195.0
 
 
 
 
 
 
 
 
42
  ---
43
- # Dataset Card for "cloud-types"
44
 
45
- [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
27
  '2': Flower
28
  '3': Gravel
29
  '4': Sugar
30
+ annotations_creators:
31
+ - crowdsourced
32
+ language_creators:
33
+ - found
34
+ language:
35
+ - en
36
+ license:
37
+ - cc
38
+ multilinguality:
39
+ - monolingual
40
+ size_categories:
41
+ - 1K<n<10K
42
+ source_datasets:
43
+ - original
44
+ task_categories:
45
+ - object-detection
46
+ task_ids: []
47
+ pretty_name: cloud-types
48
+ tags:
49
+ - rf100
50
  ---
 
51
 
52
+ # Dataset Card for cloud-types
53
+
54
+ ** The original COCO dataset is stored at `dataset.tar.gz`**
55
+
56
+ ## Dataset Description
57
+
58
+ - **Homepage:** https://universe.roboflow.com/object-detection/cloud-types
59
+ - **Point of Contact:** francesco.zuppichini@gmail.com
60
+
61
+ ### Dataset Summary
62
+
63
+ cloud-types
64
+
65
+ ### Supported Tasks and Leaderboards
66
+
67
+ - `object-detection`: The dataset can be used to train a model for Object Detection.
68
+
69
+ ### Languages
70
+
71
+ English
72
+
73
+ ## Dataset Structure
74
+
75
+ ### Data Instances
76
+
77
+ A data point comprises an image and its object annotations.
78
+
79
+ ```
80
+ {
81
+ 'image_id': 15,
82
+ 'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=640x640 at 0x2373B065C18>,
83
+ 'width': 964043,
84
+ 'height': 640,
85
+ 'objects': {
86
+ 'id': [114, 115, 116, 117],
87
+ 'area': [3796, 1596, 152768, 81002],
88
+ 'bbox': [
89
+ [302.0, 109.0, 73.0, 52.0],
90
+ [810.0, 100.0, 57.0, 28.0],
91
+ [160.0, 31.0, 248.0, 616.0],
92
+ [741.0, 68.0, 202.0, 401.0]
93
+ ],
94
+ 'category': [4, 4, 0, 0]
95
+ }
96
+ }
97
+ ```
98
+
99
+ ### Data Fields
100
+
101
+ - `image`: the image id
102
+ - `image`: `PIL.Image.Image` object containing the image. Note that when accessing the image column: `dataset[0]["image"]` the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the `"image"` column, *i.e.* `dataset[0]["image"]` should **always** be preferred over `dataset["image"][0]`
103
+ - `width`: the image width
104
+ - `height`: the image height
105
+ - `objects`: a dictionary containing bounding box metadata for the objects present on the image
106
+ - `id`: the annotation id
107
+ - `area`: the area of the bounding box
108
+ - `bbox`: the object's bounding box (in the [coco](https://albumentations.ai/docs/getting_started/bounding_boxes_augmentation/#coco) format)
109
+ - `category`: the object's category.
110
+
111
+
112
+ #### Who are the annotators?
113
+
114
+ Annotators are Roboflow users
115
+
116
+ ## Additional Information
117
+
118
+ ### Licensing Information
119
+
120
+ See original homepage https://universe.roboflow.com/object-detection/cloud-types
121
+
122
+ ### Citation Information
123
+
124
+ ```
125
+ @misc{ cloud-types,
126
+ title = { cloud types Dataset },
127
+ type = { Open Source Dataset },
128
+ author = { Roboflow 100 },
129
+ howpublished = { \url{ https://universe.roboflow.com/object-detection/cloud-types } },
130
+ url = { https://universe.roboflow.com/object-detection/cloud-types },
131
+ journal = { Roboflow Universe },
132
+ publisher = { Roboflow },
133
+ year = { 2022 },
134
+ month = { nov },
135
+ note = { visited on 2023-03-29 },
136
+ }"
137
+ ```
138
+
139
+ ### Contributions
140
+
141
+ Thanks to [@mariosasko](https://github.com/mariosasko) for adding this dataset.