de-francophones's picture
Upload 1748 files
1ee522c verified
|
raw
history blame
6.1 kB

fra.sdrt.annodis

Description

The ANNODIS resource is a diversified corpus of written French texts enriched with a manual annotation of discourse structures. It was produced as part of the ANNODIS project (ANNOtation DIScursive), financed by the French National Research Agency (ANR). Its main features:

  • two mark-ups (corresponding to two distinct approaches to discourse organisation)
  • rhetorical relations annotation including 3188 Elementary Discourse Units (EDU) and 1395 Complex Discourse Units (CDU) linked by 3355 rhetorical relations (e.g. contrast, elaboration, result, attribution, etc.)
  • multi-level structures annotion including 991 Enumerative Structures (ES) and 588 Topical Chains (TC) with their clues (e.g. 2456 topical expressions)
  • texts (a total of 687,000 words) coming from four sources
    • the regional daily Est Républicain (39 articles - 10,000 words)
    • the French Wikipedia (30 articles + 30 extracts - 242,000 words)
    • the proceedings of the Congrès Mondial de Linguistique Française 2008 (25 articles - 169,000 words)
    • reports from the Institut Français de Relations Internationales (32 reports - 266,000 words)

The texts were annotated using the Glozz annotation tool created for the ANNODIS resource

Partners in the ANNODIS project (ANR corpus 2007)

  • CLLE (UMR 5263), Université de Toulouse UTM (Myriam Bras, Cécile Fabre, Lydia-Mai Ho-Dac, Anne Le Draoulec, Marie-Paule Péry-Woodley, Laurent Prévot, Josette Rebeyrolle, Franck Sajous, Ludovic Tanguy, Marianne Vergez-Couret)
  • IRIT (UMR 5505) Université de Toulouse UPS (Nicholas Asher, Farah Benamara, Philippe Muller, Laure Vieu, Stergos Afantenos)
  • GREYC (UMR 6072) Université de Caen (Thierry Charnois, Bruno Crémilleux, Patrice Enjalbert, Stéphane Ferrari , Alexandre Labadié, Julien Lebranchu, Dominique Legallois, Yann Mathet, Antoine Widlöcher)

Publications presenting the ANNODIS project/resource

  • Afantenos S. D., Asher N., Benamara F., Bras M., Fabre C., Ho-Dac L.-M., Le Draoulec A. Muller P., Péry-Woodley M.-P., Prévot L., Rebeyrolle J., Tanguy L., Vergez-Couret M., Vieu L. (2012). An empirical resource for discovering cognitive principles of discourse organization: the ANNODIS corpus. LREC 2012, Istanbul, Turkey, July 2012.
    @inproceedings{afantenos-etal-2012-empirical,
    title = "An empirical resource for discovering cognitive principles of discourse organisation: the {ANNODIS} corpus",
    author = "Afantenos, Stergos  and
      Asher, Nicholas  and
      Benamara, Farah  and
      Bras, Myriam  and
      Fabre, C{\'e}cile  and
      Ho-dac, Mai  and
      Draoulec, Anne Le  and
      Muller, Philippe  and
      P{\'e}ry-Woodley, Marie-Paule  and
      Pr{\'e}vot, Laurent  and
      Rebeyrolles, Josette  and
      Tanguy, Ludovic  and
      Vergez-Couret, Marianne  and
      Vieu, Laure",
    booktitle = "Proceedings of the Eighth International Conference on Language Resources and Evaluation ({LREC}'12)",
    month = may,
    year = "2012",
    address = "Istanbul, Turkey",
    publisher = "European Language Resources Association (ELRA)",
    url = "http://www.lrec-conf.org/proceedings/lrec2012/pdf/836_Paper.pdf",
    pages = "2727--2734",
    abstract = "This paper describes the ANNODIS resource, a discourse-level annotated corpus for French. The corpus combines two perspectives on discourse: a bottom-up approach and a top-down approach. The bottom-up view incrementally builds a structure from elementary discourse units, while the top-down view focuses on the selective annotation of multi-level discourse structures. The corpus is composed of texts that are diversified with respect to genre, length and type of discursive organisation. The methodology followed here involves an iterative design of annotation guidelines in order to reach satisfactory inter-annotator agreement levels. This allows us to raise a few issues relevant for the comparison of such complex objects as discourse structures. The corpus also serves as a source of empirical evidence for discourse theories. We present here two first analyses taking advantage of this new annotated corpus --one that tested hypotheses on constraints governing discourse structure, and another that studied the variations in composition and signalling of multi-level discourse structures.",
    }
    
  • Péry-Woodley M.-P., Afantenos S. D., Ho-Dac L.-M., Asher N. (2011). La ressource ANNODIS, un corpus enrichi d'annotations discursives. TAL 52(3), pp 71-101.
  • Péry-Woodley M.-P., Asher N., Enjalbert P., Benamara F., Bras M., Fabre C., Ferrari S., Ho-Dac L.-M., Le Draoulec A. , Mathet Y., Muller P., Prévot L., Rebeyrolle J., Tanguy L., Vergez-Couret M., Vieu L., Wildöcher A. (2009). ANNODIS : une approche outillée de l'annotation de structures discursives, TALN 2009, Senlis, Juin, 2009.

Annotation manuals (in French)

  • Muller P., Vergez-Couret M., Prévot L., Asher N., Benamara F., Bras M., Le Draoulec A., Vieu L. (2012). Manuel d'annotation en relations de discours du projet ANNODIS. Carnets de Grammaire 21, 34p.
  • Colléter M., Fabre C., Ho-Dac L.-M., Péry-Woodley M.-P., Rebeyrolle J., Tanguy L. (2012). La ressource ANNODIS multi-échelle : guide d'annotation et "bonus" Carnets de Grammaire 20, 63p.

Licence

The ANNODIS resource is available under Creative Commons licence BY-NC-SA 3.0 (Attribution-NonCommercial-ShareAlike). Please read it carefully.

Person in charge

Lydia-Mai Ho-Dac Contact : hodac@univ-tlse2.fr

Source

Yann MATHET & Antoine WIDLOCHER ANR Project: ANNODIS

DISRPT 2023 Shared Task Information

For the DISRPT 2021 and 2023 shared task on elementary discourse unit segmentation, only segmentations from the 'expert' annotation portion of the corpus were used, leaving outside the 'naive' annotation portions.

Syntactic parses are automatically generated using Spacy. For relation classification, note that this dataset contains discontinuous discourse units (analyzed as equivalent to split 'same-unit' in RST).