File size: 53,745 Bytes
3bdb76c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
import datetime

import dill

from dreamcoder.compression import induceGrammar
from dreamcoder.utilities import *
try:
    from dreamcoder.recognition import *
except:
    eprint("Failure loading recognition - only acceptable if using pypy ")
from dreamcoder.enumeration import *
from dreamcoder.fragmentGrammar import *
from dreamcoder.taskBatcher import *
from dreamcoder.primitiveGraph import graphPrimitives
from dreamcoder.dreaming import backgroundHelmholtzEnumeration


class ECResult():
    def __init__(self, _=None,
                 frontiersOverTime=None,
                 testingSearchTime=None,
                 learningCurve=None,
                 grammars=None,
                 taskSolutions=None,
                 averageDescriptionLength=None,
                 parameters=None,
                 recognitionModel=None,
                 searchTimes=None,
                 recognitionTaskMetrics=None,
                 numTestingTasks=None,
                 sumMaxll=None,
                 testingSumMaxll=None,
                 hitsAtEachWake=None,
                 timesAtEachWake=None,
                 allFrontiers=None):
        self.frontiersOverTime = {} # Map from task to [frontier at iteration 1, frontier at iteration 2, ...]
        self.hitsAtEachWake = hitsAtEachWake or []
        self.timesAtEachWake = timesAtEachWake or []
        self.testingSearchTime = testingSearchTime or []
        self.searchTimes = searchTimes or []
        self.trainSearchTime = {} # map from task to search time
        self.testSearchTime = {} # map from task to search time
        self.recognitionTaskMetrics = recognitionTaskMetrics or {} 
        self.recognitionModel = recognitionModel
        self.averageDescriptionLength = averageDescriptionLength or []
        self.parameters = parameters
        self.learningCurve = learningCurve or []
        self.grammars = grammars or []
        self.taskSolutions = taskSolutions or {}
        self.numTestingTasks = numTestingTasks
        self.sumMaxll = sumMaxll or [] #TODO name change 
        self.testingSumMaxll = testingSumMaxll or [] #TODO name change
        self.allFrontiers = allFrontiers or {}

    def __repr__(self):
        attrs = ["{}={}".format(k, v) for k, v in self.__dict__.items()]
        return "ECResult({})".format(", ".join(attrs))

    def getTestingTasks(self):
        testing = []
        training = self.taskSolutions.keys()
        for t in self.recognitionTaskMetrics:
            if isinstance(t, Task) and t not in training: testing.append(t)
        return testing


    def recordFrontier(self, frontier):
        t = frontier.task
        if t not in self.frontiersOverTime: self.frontiersOverTime[t] = []
        self.frontiersOverTime[t].append(frontier)

    # Linux does not like files that have more than 256 characters
    # So when exporting the results we abbreviate the parameters
    abbreviations = {"frontierSize": "fs",
                     "useDSL": "DSL",
                     "taskReranker": "TRR",
                     "matrixRank": "MR",
                     "reuseRecognition": "RR",
                     "ensembleSize": "ES",
                     "recognitionTimeout": "RT",
                     "recognitionSteps": "RS",
                     "iterations": "it",
                     "maximumFrontier": "MF",
                     "pseudoCounts": "pc",
                     "auxiliaryLoss": "aux",
                     "structurePenalty": "L",
                     "helmholtzRatio": "HR",
                     "biasOptimal": "BO",
                     "contextual": "CO",
                     "topK": "K",
                     "enumerationTimeout": "ET",
                     "useRecognitionModel": "rec",
                     "use_ll_cutoff": "llcut",
                     "topk_use_only_likelihood": "topkNotMAP",
                     "activation": "act",
                     "storeTaskMetrics": 'STM',
                     "topkNotMAP": "tknm",
                     "rewriteTaskMetrics": "RW",
                     'taskBatchSize': 'batch'}

    @staticmethod
    def abbreviate(parameter): return ECResult.abbreviations.get(parameter, parameter)

    @staticmethod
    def parameterOfAbbreviation(abbreviation):
        return ECResult.abbreviationToParameter.get(abbreviation, abbreviation)

    @staticmethod
    def clearRecognitionModel(path):
        SUFFIX = '.pickle'
        assert path.endswith(SUFFIX)
        
        with open(path,'rb') as handle:
            result = dill.load(handle)
        
        result.recognitionModel = None
        
        clearedPath = path[:-len(SUFFIX)] + "_graph=True" + SUFFIX
        with open(clearedPath,'wb') as handle:
            result = dill.dump(result, handle)
        eprint(" [+] Cleared recognition model from:")
        eprint("     %s"%path)
        eprint("     and exported to:")
        eprint("     %s"%clearedPath)
        eprint("     Use this one for graphing.")


ECResult.abbreviationToParameter = {
    v: k for k, v in ECResult.abbreviations.items()}


def explorationCompression(*arguments, **keywords):
    for r in ecIterator(*arguments, **keywords):
        pass
    return r


def ecIterator(grammar, tasks,
               _=None,
               useDSL=True,
               noConsolidation=False,
               mask=False,
               seed=0,
               addFullTaskMetrics=False,
               matrixRank=None,
               solver='ocaml',
               compressor="rust",
               biasOptimal=False,
               contextual=False,
               testingTasks=[],
               iterations=None,
               resume=None,
               enumerationTimeout=None,
               testingTimeout=None,
               testEvery=1,
               reuseRecognition=False,
               ensembleSize=1,
               useRecognitionModel=True,
               recognitionTimeout=None,
               recognitionSteps=None,
               helmholtzRatio=0.,
               featureExtractor=None,
               activation='relu',
               topK=1,
               topk_use_only_likelihood=False,
               use_map_search_times=True,
               maximumFrontier=None,
               pseudoCounts=1.0, aic=1.0,
               structurePenalty=0.001, arity=0,
               evaluationTimeout=1.0,  # seconds
               taskBatchSize=None,
               taskReranker='default',
               CPUs=1,
               cuda=False,
               message="",
               outputPrefix=None,
               storeTaskMetrics=False,
               rewriteTaskMetrics=True,
               auxiliaryLoss=False,
               custom_wake_generative=None):
    if enumerationTimeout is None:
        eprint(
            "Please specify an enumeration timeout:",
            "explorationCompression(..., enumerationTimeout = ..., ...)")
        assert False
    if iterations is None:
        eprint(
            "Please specify a iteration count: explorationCompression(..., iterations = ...)")
        assert False
    if useRecognitionModel and featureExtractor is None:
        eprint("Warning: Recognition model needs feature extractor.",
               "Ignoring recognition model.")
        useRecognitionModel = False
    if ensembleSize > 1 and not useRecognitionModel:
        eprint("Warning: ensemble size requires using the recognition model, aborting.")
        assert False
    if biasOptimal and not useRecognitionModel:
        eprint("Bias optimality only applies to recognition models, aborting.")
        assert False
    if contextual and not useRecognitionModel:
        eprint("Contextual only applies to recognition models, aborting")
        assert False
    if reuseRecognition and not useRecognitionModel:
        eprint("Reuse of recognition model weights at successive iteration only applies to recognition models, aborting")
        assert False
    if matrixRank is not None and not contextual:
        eprint("Matrix rank only applies to contextual recognition models, aborting")
        assert False
    assert useDSL or useRecognitionModel, "You specified that you didn't want to use the DSL AND you don't want to use the recognition model. Figure out what you want to use."
    if testingTimeout > 0 and len(testingTasks) == 0:
        eprint("You specified a testingTimeout, but did not provide any held out testing tasks, aborting.")
        assert False

    # We save the parameters that were passed into EC
    # This is for the purpose of exporting the results of the experiment
    parameters = {
        k: v for k,
        v in locals().items() if k not in {
            "tasks",
            "use_map_search_times",
            "seed",
            "activation",
            "grammar",
            "cuda",
            "_",
            "testingTimeout",
            "testEvery",
            "message",
            "CPUs",
            "outputPrefix",
            "resume",
            "resumeFrontierSize",
            "addFullTaskMetrics",
            "featureExtractor",
            "evaluationTimeout",
            "testingTasks",
            "compressor",
            "custom_wake_generative"} and v is not None}
    if not useRecognitionModel:
        for k in {"helmholtzRatio", "recognitionTimeout", "biasOptimal", "mask",
                  "contextual", "matrixRank", "reuseRecognition", "auxiliaryLoss", "ensembleSize"}:
            if k in parameters: del parameters[k]
    else: del parameters["useRecognitionModel"];
    if useRecognitionModel and not contextual:
        if "matrixRank" in parameters:
            del parameters["matrixRank"]
        if "mask" in parameters:
            del parameters["mask"]
    if not mask and 'mask' in parameters: del parameters["mask"]
    if not auxiliaryLoss and 'auxiliaryLoss' in parameters: del parameters['auxiliaryLoss']
    if not useDSL:
        for k in {"structurePenalty", "pseudoCounts", "aic"}:
            del parameters[k]
    else: del parameters["useDSL"]
    
    # Uses `parameters` to construct the checkpoint path
    def checkpointPath(iteration, extra=""):
        parameters["iterations"] = iteration
        kvs = [
            "{}={}".format(
                ECResult.abbreviate(k),
                parameters[k]) for k in sorted(
                parameters.keys())]
        return "{}_{}{}.pickle".format(outputPrefix, "_".join(kvs), extra)

    if message:
        message = " (" + message + ")"
    eprint("Running EC%s on %s @ %s with %d CPUs and parameters:" %
           (message, os.uname()[1], datetime.datetime.now(), CPUs))
    for k, v in parameters.items():
        eprint("\t", k, " = ", v)
    eprint("\t", "evaluationTimeout", " = ", evaluationTimeout)
    eprint("\t", "cuda", " = ", cuda)
    eprint()

    if addFullTaskMetrics:
        assert resume is not None, "--addFullTaskMetrics requires --resume"

    def reportMemory():
        eprint(f"Currently using this much memory: {getThisMemoryUsage()}")
    
    # Restore checkpoint
    if resume is not None:
        try:
            resume = int(resume)
            path = checkpointPath(resume)
        except ValueError:
            path = resume
        with open(path, "rb") as handle:
            result = dill.load(handle)
        resume = len(result.grammars) - 1
        eprint("Loaded checkpoint from", path)
        grammar = result.grammars[-1] if result.grammars else grammar
    else:  # Start from scratch
        #for graphing of testing tasks
        numTestingTasks = len(testingTasks) if len(testingTasks) != 0 else None

        result = ECResult(parameters=parameters,            
                          grammars=[grammar],
                          taskSolutions={
                              t: Frontier([],
                                          task=t) for t in tasks},
                          recognitionModel=None, numTestingTasks=numTestingTasks,
                          allFrontiers={
                              t: Frontier([],
                                          task=t) for t in tasks})


    # Set up the task batcher.
    if taskReranker == 'default':
        taskBatcher = DefaultTaskBatcher()
    elif taskReranker == 'random':
        taskBatcher = RandomTaskBatcher()
    elif taskReranker == 'randomShuffle':
        taskBatcher = RandomShuffleTaskBatcher(seed)
    elif taskReranker == 'unsolved':
        taskBatcher = UnsolvedTaskBatcher()
    elif taskReranker == 'unsolvedEntropy':
        taskBatcher = UnsolvedEntropyTaskBatcher()
    elif taskReranker == 'unsolvedRandomEntropy':
        taskBatcher = UnsolvedRandomEntropyTaskBatcher()
    elif taskReranker == 'randomkNN':
        taskBatcher = RandomkNNTaskBatcher()
    elif taskReranker == 'randomLowEntropykNN':
        taskBatcher = RandomLowEntropykNNTaskBatcher()
    else:
        eprint("Invalid task reranker: " + taskReranker + ", aborting.")
        assert False

    # Check if we are just updating the full task metrics
    if addFullTaskMetrics:
        if testingTimeout is not None and testingTimeout > enumerationTimeout:
            enumerationTimeout = testingTimeout
        if result.recognitionModel is not None:
            _enumerator = lambda *args, **kw: result.recognitionModel.enumerateFrontiers(*args, **kw)
        else: _enumerator = lambda *args, **kw: multicoreEnumeration(result.grammars[-1], *args, **kw)
        enumerator = lambda *args, **kw: _enumerator(*args, 
                                                     maximumFrontier=maximumFrontier, 
                                                     CPUs=CPUs, evaluationTimeout=evaluationTimeout,
                                                     solver=solver,
                                                     **kw)
        trainFrontiers, _, trainingTimes = enumerator(tasks, enumerationTimeout=enumerationTimeout)
        testFrontiers, _, testingTimes = enumerator(testingTasks, enumerationTimeout=testingTimeout, testing=True)

        recognizer = result.recognitionModel
        updateTaskSummaryMetrics(result.recognitionTaskMetrics, trainingTimes, 'recognitionBestTimes')
        updateTaskSummaryMetrics(result.recognitionTaskMetrics, recognizer.taskGrammarLogProductions(tasks), 'taskLogProductions')
        updateTaskSummaryMetrics(result.recognitionTaskMetrics, recognizer.taskGrammarEntropies(tasks), 'taskGrammarEntropies')
        updateTaskSummaryMetrics(result.recognitionTaskMetrics, result.recognitionModel.taskAuxiliaryLossLayer(tasks), 'taskAuxiliaryLossLayer')
        
        updateTaskSummaryMetrics(result.recognitionTaskMetrics, testingTimes, 'heldoutTestingTimes')
        updateTaskSummaryMetrics(result.recognitionTaskMetrics, recognizer.taskGrammarLogProductions(testingTasks), 'heldoutTaskLogProductions')
        updateTaskSummaryMetrics(result.recognitionTaskMetrics, recognizer.taskGrammarEntropies(testingTasks), 'heldoutTaskGrammarEntropies')
        updateTaskSummaryMetrics(result.recognitionTaskMetrics, result.recognitionModel.taskAuxiliaryLossLayer(testingTasks), 'heldoutAuxiliaryLossLayer')

        updateTaskSummaryMetrics(result.recognitionTaskMetrics, {f.task: f
                                                                 for f in trainFrontiers + testFrontiers
                                                                 if len(f) > 0},
                                 'frontier')
        SUFFIX = ".pickle"
        assert path.endswith(SUFFIX)
        path = path[:-len(SUFFIX)] + "_FTM=True" + SUFFIX
        with open(path, "wb") as handle: dill.dump(result, handle)
        if useRecognitionModel: ECResult.clearRecognitionModel(path)
            
        sys.exit(0)
    
    
    for j in range(resume or 0, iterations):
        if storeTaskMetrics and rewriteTaskMetrics:
            eprint("Resetting task metrics for next iteration.")
            result.recognitionTaskMetrics = {}

        reportMemory()

        # Evaluate on held out tasks if we have them
        if testingTimeout > 0 and ((j % testEvery == 0) or (j == iterations - 1)):
            eprint("Evaluating on held out testing tasks for iteration: %d" % (j))
            evaluateOnTestingTasks(result, testingTasks, grammar,
                                   CPUs=CPUs, maximumFrontier=maximumFrontier,
                                   solver=solver,
                                   enumerationTimeout=testingTimeout, evaluationTimeout=evaluationTimeout)            
        # If we have to also enumerate Helmholtz frontiers,
        # do this extra sneaky in the background
        if useRecognitionModel and biasOptimal and helmholtzRatio > 0 and \
           all( str(p) != "REAL" for p in grammar.primitives ): # real numbers don't support this
            # the DSL is fixed, so the dreams are also fixed. don't recompute them.
            if useDSL or 'helmholtzFrontiers' not in locals():
                helmholtzFrontiers = backgroundHelmholtzEnumeration(tasks, grammar, enumerationTimeout,
                                                                    evaluationTimeout=evaluationTimeout,
                                                                    special=featureExtractor.special)
            else:
                print("Reusing dreams from previous iteration.")
        else:
            helmholtzFrontiers = lambda: []

        reportMemory()

        # Get waking task batch.
        wakingTaskBatch = taskBatcher.getTaskBatch(result, tasks, taskBatchSize, j)
        eprint("Using a waking task batch of size: " + str(len(wakingTaskBatch)))

        # WAKING UP
        if useDSL:
            wake_generative = custom_wake_generative if custom_wake_generative is not None else default_wake_generative
            topDownFrontiers, times = wake_generative(grammar, wakingTaskBatch,
                                                      solver=solver,
                                                      maximumFrontier=maximumFrontier,
                                                      enumerationTimeout=enumerationTimeout,
                                                      CPUs=CPUs,
                                                      evaluationTimeout=evaluationTimeout)
            result.trainSearchTime = {t: tm for t, tm in times.items() if tm is not None}
        else:
            eprint("Skipping top-down enumeration because we are not using the generative model")
            topDownFrontiers, times = [], {t: None for t in wakingTaskBatch }

        tasksHitTopDown = {f.task for f in topDownFrontiers if not f.empty}
        result.hitsAtEachWake.append(len(tasksHitTopDown))

        reportMemory()

        # Combine topDownFrontiers from this task batch with all frontiers.
        for f in topDownFrontiers:
            if f.task not in result.allFrontiers: continue # backward compatibility with old checkpoints
            result.allFrontiers[f.task] = result.allFrontiers[f.task].combine(f).topK(maximumFrontier)

        eprint("Frontiers discovered top down: " + str(len(tasksHitTopDown)))
        eprint("Total frontiers: " + str(len([f for f in result.allFrontiers.values() if not f.empty])))

        # Train + use recognition model
        if useRecognitionModel:
            # Should we initialize the weights to be what they were before?
            previousRecognitionModel = None
            if reuseRecognition and result.recognitionModel is not None:
                previousRecognitionModel = result.recognitionModel

            thisRatio = helmholtzRatio
            #if j == 0 and not biasOptimal: thisRatio = 0
            if all( f.empty for f in result.allFrontiers.values() ): thisRatio = 1.                

            tasksHitBottomUp = \
             sleep_recognition(result, grammar, wakingTaskBatch, tasks, testingTasks, result.allFrontiers.values(),
                               ensembleSize=ensembleSize, featureExtractor=featureExtractor, mask=mask,
                               activation=activation, contextual=contextual, biasOptimal=biasOptimal,
                               previousRecognitionModel=previousRecognitionModel, matrixRank=matrixRank,
                               timeout=recognitionTimeout, evaluationTimeout=evaluationTimeout,
                               enumerationTimeout=enumerationTimeout,
                               helmholtzRatio=thisRatio, helmholtzFrontiers=helmholtzFrontiers(),
                               auxiliaryLoss=auxiliaryLoss, cuda=cuda, CPUs=CPUs, solver=solver,
                               recognitionSteps=recognitionSteps, maximumFrontier=maximumFrontier)

            showHitMatrix(tasksHitTopDown, tasksHitBottomUp, wakingTaskBatch)
            
        # Record the new topK solutions
        result.taskSolutions = {f.task: f.topK(topK)
                                for f in result.allFrontiers.values()}
        for f in result.allFrontiers.values(): result.recordFrontier(f)
        result.learningCurve += [
            sum(f is not None and not f.empty for f in result.taskSolutions.values())]
        updateTaskSummaryMetrics(result.recognitionTaskMetrics, {f.task: f
                                                                 for f in result.allFrontiers.values()
                                                                 if len(f) > 0},
                                 'frontier')                
        
        # Sleep-G
        if useDSL and not(noConsolidation):
            eprint(f"Currently using this much memory: {getThisMemoryUsage()}")
            grammar = consolidate(result, grammar, topK=topK, pseudoCounts=pseudoCounts, arity=arity, aic=aic,
                                  structurePenalty=structurePenalty, compressor=compressor, CPUs=CPUs,
                                  iteration=j)
            eprint(f"Currently using this much memory: {getThisMemoryUsage()}")
        else:
            eprint("Skipping consolidation.")
            result.grammars.append(grammar)
            
        if outputPrefix is not None:
            path = checkpointPath(j + 1)
            with open(path, "wb") as handle:
                try:
                    dill.dump(result, handle)
                except TypeError as e:
                    eprint(result)
                    assert(False)
            eprint("Exported checkpoint to", path)
            if useRecognitionModel:
                ECResult.clearRecognitionModel(path)

            graphPrimitives(result, "%s_primitives_%d_"%(outputPrefix,j))
            

        yield result


def showHitMatrix(top, bottom, tasks):
    tasks = set(tasks)

    total = bottom | top
    eprint(len(total), "/", len(tasks), "total hit tasks")
    bottomMiss = tasks - bottom
    topMiss = tasks - top

    eprint("{: <13s}{: ^13s}{: ^13s}".format("", "bottom miss", "bottom hit"))
    eprint("{: <13s}{: ^13d}{: ^13d}".format("top miss",
                                             len(bottomMiss & topMiss),
                                             len(bottom & topMiss)))
    eprint("{: <13s}{: ^13d}{: ^13d}".format("top hit",
                                             len(top & bottomMiss),
                                             len(top & bottom)))

def evaluateOnTestingTasks(result, testingTasks, grammar, _=None,
                           CPUs=None, solver=None, maximumFrontier=None, enumerationTimeout=None, evaluationTimeout=None):
    if result.recognitionModel is not None:
        recognizer = result.recognitionModel
        testingFrontiers, times = \
         recognizer.enumerateFrontiers(testingTasks, 
                                       CPUs=CPUs,
                                       solver=solver,
                                       maximumFrontier=maximumFrontier,
                                       enumerationTimeout=enumerationTimeout,
                                       evaluationTimeout=evaluationTimeout,
                                       testing=True)
        updateTaskSummaryMetrics(result.recognitionTaskMetrics, recognizer.taskGrammarLogProductions(testingTasks), 'heldoutTaskLogProductions')
        updateTaskSummaryMetrics(result.recognitionTaskMetrics, recognizer.taskGrammarEntropies(testingTasks), 'heldoutTaskGrammarEntropies')
        updateTaskSummaryMetrics(result.recognitionTaskMetrics, recognizer.taskGrammarEntropies(testingTasks), 'heldoutTaskGrammarEntropies')
    else:
        testingFrontiers, times = multicoreEnumeration(grammar, testingTasks, 
                                                       solver=solver,
                                                       maximumFrontier=maximumFrontier,
                                                       enumerationTimeout=enumerationTimeout,
                                                       CPUs=CPUs,
                                                       evaluationTimeout=evaluationTimeout,
                                                       testing=True)
    updateTaskSummaryMetrics(result.recognitionTaskMetrics, times, 'heldoutTestingTimes')
    updateTaskSummaryMetrics(result.recognitionTaskMetrics,
                                     {f.task: f for f in testingFrontiers if len(f) > 0 },
                                     'frontier')
    for f in testingFrontiers: result.recordFrontier(f)
    result.testSearchTime = {t: tm for t, tm in times.items() if tm is not None}
    times = [t for t in times.values() if t is not None ]
    eprint("\n".join(f.summarize() for f in testingFrontiers))
    summaryStatistics("Testing tasks", times)
    eprint("Hits %d/%d testing tasks" % (len(times), len(testingTasks)))
    result.testingSearchTime.append(times)

        
def default_wake_generative(grammar, tasks, 
                    maximumFrontier=None,
                    enumerationTimeout=None,
                    CPUs=None,
                    solver=None,
                    evaluationTimeout=None):
    topDownFrontiers, times = multicoreEnumeration(grammar, tasks, 
                                                   maximumFrontier=maximumFrontier,
                                                   enumerationTimeout=enumerationTimeout,
                                                   CPUs=CPUs,
                                                   solver=solver,
                                                   evaluationTimeout=evaluationTimeout)
    eprint("Generative model enumeration results:")
    eprint(Frontier.describe(topDownFrontiers))
    summaryStatistics("Generative model", [t for t in times.values() if t is not None])
    return topDownFrontiers, times

def sleep_recognition(result, grammar, taskBatch, tasks, testingTasks, allFrontiers, _=None,
                      ensembleSize=1, featureExtractor=None, matrixRank=None, mask=False,
                      activation=None, contextual=True, biasOptimal=True,
                      previousRecognitionModel=None, recognitionSteps=None,
                      timeout=None, enumerationTimeout=None, evaluationTimeout=None,
                      helmholtzRatio=None, helmholtzFrontiers=None, maximumFrontier=None,
                      auxiliaryLoss=None, cuda=None, CPUs=None, solver=None):
    eprint("Using an ensemble size of %d. Note that we will only store and test on the best recognition model." % ensembleSize)

    featureExtractorObjects = [featureExtractor(tasks, testingTasks=testingTasks, cuda=cuda) for i in range(ensembleSize)]
    recognizers = [RecognitionModel(featureExtractorObjects[i],
                                    grammar,
                                    mask=mask,
                                    rank=matrixRank,
                                    activation=activation,
                                    cuda=cuda,
                                    contextual=contextual,
                                    previousRecognitionModel=previousRecognitionModel,
                                    id=i) for i in range(ensembleSize)]
    eprint(f"Currently using this much memory: {getThisMemoryUsage()}")
    trainedRecognizers = parallelMap(min(CPUs,len(recognizers)),
                                     lambda recognizer: recognizer.train(allFrontiers,
                                                                         biasOptimal=biasOptimal,
                                                                         helmholtzFrontiers=helmholtzFrontiers, 
                                                                         CPUs=CPUs,
                                                                         evaluationTimeout=evaluationTimeout,
                                                                         timeout=timeout,
                                                                         steps=recognitionSteps,
                                                                         helmholtzRatio=helmholtzRatio,
                                                                         auxLoss=auxiliaryLoss,
                                                                         vectorized=True),
                                     recognizers,
                                     seedRandom=True)
    eprint(f"Currently using this much memory: {getThisMemoryUsage()}")
    # Enumerate frontiers for each of the recognizers.
    eprint("Trained an ensemble of %d recognition models, now enumerating." % len(trainedRecognizers))
    ensembleFrontiers, ensembleTimes, ensembleRecognitionTimes = [], [], []
    mostTasks = 0
    bestRecognizer = None
    totalTasksHitBottomUp = set()
    for recIndex, recognizer in enumerate(trainedRecognizers):
        eprint("Enumerating from recognizer %d of %d" % (recIndex, len(trainedRecognizers)))
        bottomupFrontiers, allRecognitionTimes = \
                        recognizer.enumerateFrontiers(taskBatch, 
                                                      CPUs=CPUs,
                                                      maximumFrontier=maximumFrontier,
                                                      enumerationTimeout=enumerationTimeout,
                                                      evaluationTimeout=evaluationTimeout,
                                                      solver=solver)
        ensembleFrontiers.append(bottomupFrontiers)
        ensembleTimes.append([t for t in allRecognitionTimes.values() if t is not None])
        ensembleRecognitionTimes.append(allRecognitionTimes)

        recognizerTasksHitBottomUp = {f.task for f in bottomupFrontiers if not f.empty}
        totalTasksHitBottomUp.update(recognizerTasksHitBottomUp)
        eprint("Recognizer %d solved %d/%d tasks; total tasks solved is now %d." % (recIndex, len(recognizerTasksHitBottomUp), len(tasks), len(totalTasksHitBottomUp)))
        if len(recognizerTasksHitBottomUp) >= mostTasks:
            # TODO (cathywong): could consider keeping the one that put the highest likelihood on the solved tasks.
            bestRecognizer = recIndex

    # Store the recognizer that discovers the most frontiers in the result.
    eprint("Best recognizer: %d." % bestRecognizer)
    result.recognitionModel = trainedRecognizers[bestRecognizer]
    result.trainSearchTime = {tk: tm for tk, tm in ensembleRecognitionTimes[bestRecognizer].items()
                              if tm is not None}
    updateTaskSummaryMetrics(result.recognitionTaskMetrics, ensembleRecognitionTimes[bestRecognizer], 'recognitionBestTimes')
    updateTaskSummaryMetrics(result.recognitionTaskMetrics, result.recognitionModel.taskHiddenStates(tasks), 'hiddenState')
    updateTaskSummaryMetrics(result.recognitionTaskMetrics, result.recognitionModel.taskGrammarLogProductions(tasks), 'taskLogProductions')
    updateTaskSummaryMetrics(result.recognitionTaskMetrics, result.recognitionModel.taskGrammarEntropies(tasks), 'taskGrammarEntropies')
    if contextual:
        updateTaskSummaryMetrics(result.recognitionTaskMetrics,
                                 result.recognitionModel.taskGrammarStartProductions(tasks),
                                 'startProductions')

    result.hitsAtEachWake.append(len(totalTasksHitBottomUp))
    eprint(f"Currently using this much memory: {getThisMemoryUsage()}")

    """ Rescore and combine the frontiers across the ensemble of recognition models."""
    eprint("Recognition model enumeration results for the best recognizer.")
    eprint(Frontier.describe(ensembleFrontiers[bestRecognizer]))
    summaryStatistics("Recognition model", ensembleTimes[bestRecognizer])

    eprint("Cumulative results for the full ensemble of %d recognizers: " % len(trainedRecognizers))
    # Rescore all of the ensemble frontiers according to the generative model
    # and then combine w/ original frontiers
    for bottomupFrontiers in ensembleFrontiers:
        for b in bottomupFrontiers:
            if b.task not in result.allFrontiers: continue # backwards compatibility with old checkpoints
            result.allFrontiers[b.task] = result.allFrontiers[b.task].\
                                          combine(grammar.rescoreFrontier(b)).\
                                          topK(maximumFrontier)

    eprint("Frontiers discovered bottom up: " + str(len(totalTasksHitBottomUp)))
    eprint("Total frontiers: " + str(len([f for f in result.allFrontiers.values() if not f.empty])))

    result.searchTimes.append(ensembleTimes[bestRecognizer])
    if len(ensembleTimes[bestRecognizer]) > 0:
        eprint("Average search time: ", int(mean(ensembleTimes[bestRecognizer]) + 0.5),
               "sec.\tmedian:", int(median(ensembleTimes[bestRecognizer]) + 0.5),
               "\tmax:", int(max(ensembleTimes[bestRecognizer]) + 0.5),
               "\tstandard deviation", int(standardDeviation(ensembleTimes[bestRecognizer]) + 0.5))
    return totalTasksHitBottomUp

def consolidate(result, grammar, _=None, topK=None, arity=None, pseudoCounts=None, aic=None,
                structurePenalty=None, compressor=None, CPUs=None, iteration=None):
    eprint("Showing the top 5 programs in each frontier being sent to the compressor:")
    for f in result.allFrontiers.values():
        if f.empty:
            continue
        eprint(f.task)
        for e in f.normalize().topK(5):
            eprint("%.02f\t%s" % (e.logPosterior, e.program))
        eprint()

    # First check if we have supervision at the program level for any task that was not solved
    needToSupervise = {f.task for f in result.allFrontiers.values()
                       if f.task.supervision is not None and f.empty}
    compressionFrontiers = [f.replaceWithSupervised(grammar) if f.task in needToSupervise else f
                            for f in result.allFrontiers.values() ]

    if len([f for f in compressionFrontiers if not f.empty]) == 0:
        eprint("No compression frontiers; not inducing a grammar this iteration.")
    else:
        grammar, compressionFrontiers = induceGrammar(grammar, compressionFrontiers,
                                                      topK=topK,
                                                      pseudoCounts=pseudoCounts, a=arity,
                                                      aic=aic, structurePenalty=structurePenalty,
                                                      topk_use_only_likelihood=False,
                                                      backend=compressor, CPUs=CPUs, iteration=iteration)
        # Store compression frontiers in the result.
        for c in compressionFrontiers:
            result.allFrontiers[c.task] = c.topK(0) if c in needToSupervise else c


    result.grammars.append(grammar)
    eprint("Grammar after iteration %d:" % (iteration + 1))
    eprint(grammar)
    
    return grammar
    


def commandlineArguments(_=None,
                         iterations=None,
                         enumerationTimeout=None,
                         testEvery=1,
                         topK=1,
                         reuseRecognition=False,
                         CPUs=1,
                         solver='ocaml',
                         compressor="ocaml",
                         useRecognitionModel=True,
                         recognitionTimeout=None,
                         activation='relu',
                         helmholtzRatio=1.,
                         featureExtractor=None,
                         cuda=None,
                         maximumFrontier=None,
                         pseudoCounts=1.0, aic=1.0,
                         structurePenalty=0.001, a=0,
                         taskBatchSize=None, taskReranker="default",
                         extras=None,
                         storeTaskMetrics=False,
                        rewriteTaskMetrics=True):
    if cuda is None:
        cuda = torch.cuda.is_available()
    print("CUDA is available?:", torch.cuda.is_available())
    print("using cuda?:", cuda)
    import argparse
    parser = argparse.ArgumentParser(description="")
    parser.add_argument("--resume",
                        help="Resumes EC algorithm from checkpoint. You can either pass in the path of a checkpoint, or you can pass in the iteration to resume from, in which case it will try to figure out the path.",
                        default=None,
                        type=str)
    parser.add_argument("-i", "--iterations",
                        help="default: %d" % iterations,
                        default=iterations,
                        type=int)
    parser.add_argument("-t", "--enumerationTimeout",
                        default=enumerationTimeout,
                        help="In seconds. default: %s" % enumerationTimeout,
                        type=int)
    parser.add_argument("-R", "--recognitionTimeout",
                        default=recognitionTimeout,
                        help="In seconds. Amount of time to train the recognition model on each iteration. Defaults to enumeration timeout.",
                        type=int)
    parser.add_argument("-RS", "--recognitionSteps",
                        default=None,
                        help="Number of gradient steps to train the recognition model. Can be specified instead of train time.",
                        type=int)
    parser.add_argument(
        "-k",
        "--topK",
        default=topK,
        help="When training generative and discriminative models, we train them to fit the top K programs. Ideally we would train them to fit the entire frontier, but this is often intractable. default: %d" %
        topK,
        type=int)
    parser.add_argument("-p", "--pseudoCounts",
                        default=pseudoCounts,
                        help="default: %f" % pseudoCounts,
                        type=float)
    parser.add_argument("-b", "--aic",
                        default=aic,
                        help="default: %f" % aic,
                        type=float)
    parser.add_argument("-l", "--structurePenalty",
                        default=structurePenalty,
                        help="default: %f" % structurePenalty,
                        type=float)
    parser.add_argument("-a", "--arity",
                        default=a,
                        help="default: %d" % a,
                        type=int)
    parser.add_argument("-c", "--CPUs",
                        default=CPUs,
                        help="default: %d" % CPUs,
                        type=int)
    parser.add_argument("--no-cuda",
                        action="store_false",
                        dest="cuda",
                        help="""cuda will be used if available (which it %s),
                        unless this is set""" % ("IS" if cuda else "ISN'T"))
    parser.add_argument("-m", "--maximumFrontier",
                        help="""Even though we enumerate --frontierSize
                        programs, we might want to only keep around the very
                        best for performance reasons. This is a cut off on the
                        maximum size of the frontier that is kept around.
                        Default: %s""" % maximumFrontier,
                        type=int)
    parser.add_argument("--reuseRecognition",
                        help="""Should we initialize recognition model weights to be what they were at the previous DreamCoder iteration? Default: %s""" % reuseRecognition,
                        default=reuseRecognition,
                        action="store_true")
    parser.add_argument("--recognition",
                        dest="useRecognitionModel",
                        action="store_true",
                        help="""Enable bottom-up neural recognition model.
                        Default: %s""" % useRecognitionModel)
    parser.add_argument("--ensembleSize",
                        dest="ensembleSize",
                        default=1,
                        help="Number of recognition models to train and enumerate from at each iteration.",
                        type=int)
    parser.add_argument("-g", "--no-recognition",
                        dest="useRecognitionModel",
                        action="store_false",
                        help="""Disable bottom-up neural recognition model.
                        Default: %s""" % (not useRecognitionModel))
    parser.add_argument("-d", "--no-dsl",
                        dest="useDSL",
                        action="store_false",
                        help="""Disable DSL enumeration and updating.""")
    parser.add_argument("--no-consolidation",
                        dest="noConsolidation",
                        action="store_true",
                        help="""Disable DSL updating.""")
    parser.add_argument(
        "--testingTimeout",
        type=int,
        dest="testingTimeout",
        default=0,
        help="Number of seconds we should spend evaluating on each held out testing task.")
    parser.add_argument(
        "--testEvery",
        type=int,
        dest="testEvery",
        default=1,
        help="Run heldout testing every X iterations."
        )
    parser.add_argument(
        "--seed",
        type=int,
        default=0,
        help="Random seed. Currently this only matters for random batching strategies.")
    parser.add_argument(
        "--activation",
        choices=[
            "relu",
            "sigmoid",
            "tanh"],
        default=activation,
        help="""Activation function for neural recognition model.
                        Default: %s""" %
        activation)
    parser.add_argument(
        "--solver",
        choices=[
            "ocaml",
            "pypy",
            "python"],
        default=solver,
        help="""Solver for enumeration.
                        Default: %s""" %
        solver)
    parser.add_argument(
        "-r",
        "--Helmholtz",
        dest="helmholtzRatio",
        help="""When training recognition models, what fraction of the training data should be samples from the generative model? Default %f""" %
        helmholtzRatio,
        default=helmholtzRatio,
        type=float)
    parser.add_argument(
        "--compressor",
        default=compressor,
        choices=["pypy","rust","vs","pypy_vs","ocaml","memorize"])
    parser.add_argument(
        "--matrixRank",
        help="Maximum rank of bigram transition matrix for contextual recognition model. Defaults to full rank.",
        default=None,
        type=int)
    parser.add_argument(
        "--mask",
        help="Unconditional bigram masking",
        default=False, action="store_true")
    parser.add_argument("--biasOptimal",
                        help="Enumerate dreams rather than sample them & bias-optimal recognition objective",
                        default=False, action="store_true")
    parser.add_argument("--contextual",
                        help="bigram recognition model (default is unigram model)",
                        default=False, action="store_true")
    parser.add_argument("--clear-recognition",
                        dest="clear-recognition",
                        help="Clears the recognition model from a checkpoint. Necessary for graphing results with recognition models, because pickle is kind of stupid sometimes.",
                        default=None,
                        type=str)
    parser.add_argument("--primitive-graph",
                        dest="primitive-graph",
                        nargs='+',
                        help="Displays a dependency graph of the learned primitives",
                        default=None,
                        type=str)
    parser.add_argument(
        "--taskBatchSize",
        dest="taskBatchSize",
        help="Number of tasks to train on during wake. Defaults to all tasks if None.",
        default=None,
        type=int)
    parser.add_argument(
        "--taskReranker",
        dest="taskReranker",
        help="Reranking function used to order the tasks we train on during waking.",
        choices=[
            "default",
            "random",
            "randomShuffle",
            "unsolved",
            "unsolvedEntropy",
            "unsolvedRandomEntropy",
            "randomkNN",
            "randomLowEntropykNN"],
        default=taskReranker,
        type=str)
    parser.add_argument(
        "--storeTaskMetrics",
        dest="storeTaskMetrics",
        default=True,
        help="Whether to store task metrics directly in the ECResults.",
        action="store_true"
        )
    parser.add_argument(
        "--rewriteTaskMetrics",
        dest="rewriteTaskMetrics",
        help="Whether to rewrite a new task metrics dictionary at each iteration, rather than retaining the old.",
        action="store_true"
        )
    parser.add_argument("--addTaskMetrics",
                        dest="addTaskMetrics",
                        help="Creates a checkpoint with task metrics and no recognition model for graphing.",
                        default=None,
                        nargs='+',
                        type=str)
    parser.add_argument("--auxiliary",
                        action="store_true", default=False,
                        help="Add auxiliary classification loss to recognition network training",
                        dest="auxiliaryLoss")
    parser.add_argument("--addFullTaskMetrics",
                        help="Only to be used in conjunction with --resume. Loads checkpoint, solves both testing and training tasks, stores frontiers, solve times, and task metrics, and then dies.",
                        default=False,
                        action="store_true")
    parser.add_argument("--countParameters",
                        help="Load a checkpoint then report how many parameters are in the recognition model.",
                        default=None, type=str)
    parser.set_defaults(useRecognitionModel=useRecognitionModel,
                        useDSL=True,
                        featureExtractor=featureExtractor,
                        maximumFrontier=maximumFrontier,
                        cuda=cuda)
    if extras is not None:
        extras(parser)
    v = vars(parser.parse_args())
    if v["clear-recognition"] is not None:
        ECResult.clearRecognitionModel(v["clear-recognition"])
        sys.exit(0)
    else:
        del v["clear-recognition"]
        
    if v["primitive-graph"] is not None:
        
        for n,pg in enumerate(v["primitive-graph"]):
            with open(pg,'rb') as handle:
                result = dill.load(handle)
            graphPrimitives(result,f"figures/deepProgramLearning/{sys.argv[0]}{n}",view=True)
        sys.exit(0)
    else:
        del v["primitive-graph"]

    if v["addTaskMetrics"] is not None:
        for path in v["addTaskMetrics"]:
            with open(path,'rb') as handle:
                result = dill.load(handle)
            addTaskMetrics(result, path)
        sys.exit(0)
    else:
        del v["addTaskMetrics"]

    if v["useRecognitionModel"] and v["recognitionTimeout"] is None:
        v["recognitionTimeout"] = v["enumerationTimeout"]

    if v["countParameters"]:
        with open(v["countParameters"], "rb") as handle:
            result = dill.load(handle)
        eprint("The recognition model has",
               sum(p.numel() for p in result.recognitionModel.parameters() if p.requires_grad),
               "trainable parameters and",
               sum(p.numel() for p in result.recognitionModel.parameters() ),
               "total parameters.\n",
               "The feature extractor accounts for",
               sum(p.numel() for p in result.recognitionModel.featureExtractor.parameters() ),
               "of those parameters.\n",
               "The grammar builder accounts for",
               sum(p.numel() for p in result.recognitionModel.grammarBuilder.parameters() ),
               "of those parameters.\n")
        sys.exit(0)
    del v["countParameters"]
        
        
    return v

def addTaskMetrics(result, path):
    """Adds a task metrics to ECResults that were pickled without them."""
    with torch.no_grad(): return addTaskMetrics_(result, path)
def addTaskMetrics_(result, path):
    SUFFIX = '.pickle'
    assert path.endswith(SUFFIX)

    tasks = result.taskSolutions.keys()
    everyTask = set(tasks)
    for t in result.recognitionTaskMetrics:
        if isinstance(t, Task) and t not in everyTask: everyTask.add(t)

    eprint(f"Found {len(tasks)} training tasks.")
    eprint(f"Scrounged up {len(everyTask) - len(tasks)} testing tasks.")
    if not hasattr(result, "recognitionTaskMetrics") or result.recognitionTaskMetrics is None:
        result.recognitionTaskMetrics = {}

    # If task has images, store them.
    if hasattr(list(tasks)[0], 'getImage'):
        images = {t: t.getImage(pretty=True) for t in tasks}
        updateTaskSummaryMetrics(result.recognitionTaskMetrics, images, 'taskImages')

    if hasattr(list(tasks)[0], 'highresolution'):
        images = {t: t.highresolution for t in tasks}
        updateTaskSummaryMetrics(result.recognitionTaskMetrics, images, 'taskImages')

    updateTaskSummaryMetrics(result.recognitionTaskMetrics, result.recognitionModel.auxiliaryPrimitiveEmbeddings(), 'auxiliaryPrimitiveEmbeddings')
    updateTaskSummaryMetrics(result.recognitionTaskMetrics, result.recognitionModel.taskAuxiliaryLossLayer(tasks), 'taskAuxiliaryLossLayer')
    updateTaskSummaryMetrics(result.recognitionTaskMetrics, result.recognitionModel.taskAuxiliaryLossLayer(everyTask), 'every_auxiliaryLossLayer')

    updateTaskSummaryMetrics(result.recognitionTaskMetrics, result.recognitionModel.taskGrammarFeatureLogProductions(tasks), 'grammarFeatureLogProductions')
    updateTaskSummaryMetrics(result.recognitionTaskMetrics, result.recognitionModel.taskGrammarFeatureLogProductions(everyTask), 'every_grammarFeatureLogProductions')
    updateTaskSummaryMetrics(result.recognitionTaskMetrics, result.recognitionModel.taskGrammarLogProductions(tasks), 'contextualLogProductions')
    updateTaskSummaryMetrics(result.recognitionTaskMetrics, result.recognitionModel.taskGrammarLogProductions(everyTask), 'every_contextualLogProductions')
    updateTaskSummaryMetrics(result.recognitionTaskMetrics, result.recognitionModel.taskHiddenStates(tasks), 'hiddenState')
    updateTaskSummaryMetrics(result.recognitionTaskMetrics, result.recognitionModel.taskHiddenStates(everyTask), 'every_hiddenState')
    g = result.grammars[-2] # the final entry in result.grammars is a grammar that we have not used yet
    updateTaskSummaryMetrics(result.recognitionTaskMetrics, {f.task: f.expectedProductionUses(g)
                                                             for f in result.taskSolutions.values()
                                                             if len(f) > 0},
                             'expectedProductionUses')
    updateTaskSummaryMetrics(result.recognitionTaskMetrics, {f.task: f.expectedProductionUses(g)
                                                             for t, metrics in result.recognitionTaskMetrics.items()
                                                             if "frontier" in metrics
                                                             for f in [metrics["frontier"]] 
                                                             if len(f) > 0},
                             'every_expectedProductionUses')
    if False:
        eprint(f"About to do an expensive Monte Carlo simulation w/ {len(tasks)} tasks")
        updateTaskSummaryMetrics(result.recognitionTaskMetrics,
                                 {task: result.recognitionModel.grammarOfTask(task).untorch().expectedUsesMonteCarlo(task.request, debug=False)
                                  for task in tasks },
                                 'expectedProductionUsesMonteCarlo')
    try:
        updateTaskSummaryMetrics(result.recognitionTaskMetrics,
                                 result.recognitionModel.taskGrammarStartProductions(tasks),
                                 'startProductions')
    except: pass # can fail if we do not have a contextual model

    #updateTaskSummaryMetrics(result.recognitionTaskMetrics, result.recognitionModel.taskGrammarLogProductions(tasks), 'task_no_parent_log_productions')
    #updateTaskSummaryMetrics(result.recognitionTaskMetrics, result.recognitionModel.taskGrammarEntropies(tasks), 'taskGrammarEntropies')

    result.recognitionModel = None
        
    clearedPath = path[:-len(SUFFIX)] + "_graph=True" + SUFFIX
    with open(clearedPath,'wb') as handle:
        result = dill.dump(result, handle)
    eprint(" [+] Cleared recognition model from:")
    eprint("     %s"%path)
    eprint("     and exported to:")
    eprint("     %s"%clearedPath)
    eprint("     Use this one for graphing.")