|
import inspect |
|
import signal |
|
import random |
|
import time |
|
import traceback |
|
import sys |
|
import os |
|
import subprocess |
|
import math |
|
import pickle as pickle |
|
from itertools import chain |
|
import heapq |
|
|
|
import hashlib |
|
|
|
def computeMD5hash(my_string): |
|
|
|
m = hashlib.md5() |
|
m.update(my_string.encode('utf-8')) |
|
return m.hexdigest() |
|
|
|
|
|
class Thunk(object): |
|
|
|
def __init__(self, thing): |
|
self.thing = thing |
|
self.evaluated = False |
|
|
|
def force(self): |
|
if self.evaluated: |
|
return self.thing |
|
else: |
|
self.thing = self.thing() |
|
self.evaluated = True |
|
return self.thing |
|
|
|
def cindex(i): return lambda a: a[i] |
|
|
|
class ConstantFunction: |
|
def __init__(self,v): self.v = v |
|
def __call__(self,*a,**k): return self.v |
|
|
|
def eprint(*args, **kwargs): |
|
print(*args, file=sys.stderr, **kwargs) |
|
flushEverything() |
|
|
|
|
|
class Bunch(object): |
|
def __init__(self, d): |
|
self.__dict__.update(d) |
|
|
|
def __setitem__(self, key, item): |
|
self.__dict__[key] = item |
|
|
|
def __getitem__(self, key): |
|
return self.__dict__[key] |
|
|
|
def curry(fn): |
|
"""Curries a function. Hacky way to return a curried version of functions with arbitrary #s of args. """ |
|
def make_curry_fn(signature): |
|
"""Redefines a currying function with the appropriate arguments. Hacky.""" |
|
tmp_curry = 'def tmp_curry(f): return ' |
|
tmp_curry += " ".join(['lambda %s: ' % argname for argname in signature.parameters]) |
|
tmp_curry += 'f' |
|
tmp_curry += str(signature) |
|
return tmp_curry |
|
exec(make_curry_fn(inspect.signature(fn)), globals()) |
|
return tmp_curry(fn) |
|
|
|
class Curried: |
|
def __init__(self, f, arguments=None, arity=None): |
|
if arity is None: |
|
arity = len(inspect.getargspec(f)[0]) |
|
self.f = f |
|
self.arity = arity |
|
if arguments is None: arguments = [] |
|
self.arguments = arguments |
|
|
|
def __call__(self, x): |
|
arguments = self.arguments + [x] |
|
if len(arguments) == self.arity: |
|
return self.f(*arguments) |
|
else: |
|
return Curried(self.f, arguments=arguments, arity=self.arity) |
|
|
|
def __str__(self): |
|
if len(self.arguments) == 0: |
|
return f"Curried({self.f}/{self.arity})" |
|
else: |
|
return f"Curried({self.f}/{self.arity}, {', '.join(map(str,self.arguments))})" |
|
|
|
def __repr__(self): |
|
return str(self) |
|
|
|
|
|
def hashable(v): |
|
"""Determine whether `v` can be hashed.""" |
|
try: |
|
hash(v) |
|
except TypeError: |
|
return False |
|
return True |
|
|
|
|
|
def flatten(x, abort=lambda x: False): |
|
"""Recursively unroll iterables.""" |
|
if abort(x): |
|
yield x |
|
return |
|
try: |
|
yield from chain(*(flatten(i, abort) for i in x)) |
|
except TypeError: |
|
yield x |
|
|
|
def growImage(i, iterations=2): |
|
import numpy as np |
|
for _ in range(iterations): |
|
ip = np.zeros(i.shape) |
|
|
|
c = np.array([i[:,:,j].max() |
|
for j in range(4) ]) |
|
|
|
foreground = i[:,:,3] > 0 |
|
foreground = foreground + \ |
|
np.pad(foreground, ((0,1),(0,0)), mode='constant')[1:,:] +\ |
|
np.pad(foreground, ((0,0),(0,1)), mode='constant')[:,1:] + \ |
|
np.pad(foreground, ((0,0),(1,0)), mode='constant')[:,:-1] + \ |
|
np.pad(foreground, ((1,0),(0,0)), mode='constant')[:-1,:] |
|
ip[foreground] = c |
|
i = ip |
|
return ip |
|
|
|
|
|
|
|
def summaryStatistics(n, times): |
|
if len(times) == 0: |
|
eprint(n, "no successful times to report statistics on!") |
|
else: |
|
eprint(n, "average: ", int(mean(times) + 0.5), |
|
"sec.\tmedian:", int(median(times) + 0.5), |
|
"\tmax:", int(max(times) + 0.5), |
|
"\tstandard deviation", int(standardDeviation(times) + 0.5)) |
|
|
|
def updateTaskSummaryMetrics(taskSummaryMetrics, newMetricsDict, key): |
|
"""Updates a taskSummaryMetrics dict from tasks -> metrics with new metrics under the given key.""" |
|
for task in newMetricsDict: |
|
if task in taskSummaryMetrics: |
|
taskSummaryMetrics[task][key] = newMetricsDict[task] |
|
else: |
|
taskSummaryMetrics[task] = {key : newMetricsDict[task]} |
|
|
|
NEGATIVEINFINITY = float('-inf') |
|
POSITIVEINFINITY = float('inf') |
|
|
|
PARALLELMAPDATA = None |
|
PARALLELBASESEED = None |
|
|
|
|
|
def parallelMap(numberOfCPUs, f, *xs, chunksize=None, maxtasksperchild=None, memorySensitive=False, |
|
seedRandom=False): |
|
"""seedRandom: Should each parallel worker be given a different random seed?""" |
|
global PARALLELMAPDATA |
|
global PARALLELBASESEED |
|
|
|
if memorySensitive: |
|
memoryUsage = getMemoryUsageFraction()/100. |
|
correctedCPUs = max(1, |
|
min(int(0.9/memoryUsage),numberOfCPUs)) |
|
assert correctedCPUs <= numberOfCPUs |
|
assert correctedCPUs >= 1 |
|
if correctedCPUs < numberOfCPUs: |
|
eprint("In order to not use all of the memory on the machine (%f gb), we are limiting this parallel map to only use %d CPUs"%(howManyGigabytesOfMemory(),correctedCPUs)) |
|
numberOfCPUs = correctedCPUs |
|
|
|
|
|
if numberOfCPUs == 1: |
|
return list(map(f, *xs)) |
|
|
|
n = len(xs[0]) |
|
for x in xs: |
|
assert len(x) == n |
|
|
|
assert PARALLELMAPDATA is None |
|
PARALLELMAPDATA = (f, xs) |
|
assert PARALLELBASESEED is None |
|
if seedRandom: |
|
PARALLELBASESEED = random.random() |
|
|
|
from multiprocessing import Pool |
|
|
|
|
|
permutation = list(range(n)) |
|
random.shuffle(permutation) |
|
inversePermutation = dict(zip(permutation, range(n))) |
|
|
|
|
|
if chunksize is None: |
|
chunksize = max(1, n // (numberOfCPUs * 2)) |
|
pool = Pool(numberOfCPUs, maxtasksperchild=maxtasksperchild) |
|
ys = pool.map(parallelMapCallBack, permutation, |
|
chunksize=chunksize) |
|
pool.terminate() |
|
|
|
PARALLELMAPDATA = None |
|
PARALLELBASESEED = None |
|
return [ys[inversePermutation[j]] for j in range(n)] |
|
|
|
|
|
def parallelMapCallBack(j): |
|
global PARALLELMAPDATA |
|
global PARALLELBASESEED |
|
if PARALLELBASESEED is not None: |
|
random.seed(PARALLELBASESEED + j) |
|
f, xs = PARALLELMAPDATA |
|
try: |
|
return f(*[x[j] for x in xs]) |
|
except Exception as e: |
|
eprint( |
|
"Exception in worker during lightweight parallel map:\n%s" % |
|
(traceback.format_exc())) |
|
raise e |
|
|
|
|
|
def log(x): |
|
t = type(x) |
|
if t == int or t == float: |
|
if x == 0: |
|
return NEGATIVEINFINITY |
|
return math.log(x) |
|
return x.log() |
|
|
|
|
|
def exp(x): |
|
t = type(x) |
|
if t == int or t == float: |
|
return math.exp(x) |
|
return x.exp() |
|
|
|
|
|
def lse(x, y=None): |
|
if y is None: |
|
largest = None |
|
if len(x) == 0: |
|
raise Exception('LSE: Empty sequence') |
|
if len(x) == 1: |
|
return x[0] |
|
|
|
t = type(x[0]) |
|
if t == int or t == float: |
|
largest = max(*x) |
|
return largest + math.log(sum(math.exp(z - largest) for z in x)) |
|
|
|
import torch |
|
if t == torch.Tensor and x[0].size() == torch.Size([]): |
|
return torchSoftMax([datum.view(1) for datum in x]) |
|
|
|
return torchSoftMax(x) |
|
else: |
|
if x is NEGATIVEINFINITY: |
|
return y |
|
if y is NEGATIVEINFINITY: |
|
return x |
|
tx = type(x) |
|
ty = type(y) |
|
if (ty == int or ty == float) and (tx == int or tx == float): |
|
if x > y: |
|
return x + math.log(1. + math.exp(y - x)) |
|
else: |
|
return y + math.log(1. + math.exp(x - y)) |
|
return torchSoftMax(x, y) |
|
|
|
|
|
def torchSoftMax(x, y=None): |
|
from torch.nn.functional import log_softmax |
|
import torch |
|
if y is None: |
|
if isinstance(x, list): |
|
x = torch.cat(x) |
|
return (x - log_softmax(x, dim=0))[0] |
|
x = torch.cat((x, y)) |
|
|
|
return (x - log_softmax(x, dim=0))[0] |
|
|
|
|
|
def invalid(x): |
|
return math.isinf(x) or math.isnan(x) |
|
|
|
|
|
def valid(x): return not invalid(x) |
|
|
|
|
|
def forkCallBack(x): |
|
[f, a, k] = x |
|
try: |
|
return f(*a, **k) |
|
except Exception as e: |
|
eprint( |
|
"Exception in worker during forking:\n%s" % |
|
(traceback.format_exc())) |
|
raise e |
|
|
|
|
|
def callFork(f, *arguments, **kw): |
|
"""Forks a new process to execute the call. Blocks until the call completes.""" |
|
global FORKPARAMETERS |
|
|
|
from multiprocessing import Pool |
|
|
|
workers = Pool(1) |
|
ys = workers.map(forkCallBack, [[f, arguments, kw]]) |
|
workers.terminate() |
|
assert len(ys) == 1 |
|
return ys[0] |
|
|
|
|
|
PARALLELPROCESSDATA = None |
|
|
|
|
|
def launchParallelProcess(f, *a, **k): |
|
global PARALLELPROCESSDATA |
|
|
|
PARALLELPROCESSDATA = [f, a, k] |
|
|
|
from multiprocessing import Process |
|
p = Process(target=_launchParallelProcess, args=tuple([])) |
|
p.start() |
|
PARALLELPROCESSDATA = None |
|
return p |
|
|
|
|
|
def _launchParallelProcess(): |
|
global PARALLELPROCESSDATA |
|
[f, a, k] = PARALLELPROCESSDATA |
|
try: |
|
f(*a, **k) |
|
except Exception as e: |
|
eprint( |
|
"Exception in worker during forking:\n%s" % |
|
(traceback.format_exc())) |
|
raise e |
|
|
|
|
|
def jsonBinaryInvoke(binary, message): |
|
import json |
|
import subprocess |
|
import os |
|
|
|
message = json.dumps(message) |
|
try: |
|
process = subprocess.Popen(binary, |
|
stdin=subprocess.PIPE, |
|
stdout=subprocess.PIPE) |
|
response, error = process.communicate(bytes(message, encoding="utf-8")) |
|
except OSError as exc: |
|
raise exc |
|
try: |
|
response = json.loads(response.decode("utf-8")) |
|
except Exception as e: |
|
eprint("Could not parse json.") |
|
with open("/tmp/_message","w") as handle: |
|
handle.write(message) |
|
with open("/tmp/_response","w") as handle: |
|
handle.write(response.decode("utf-8")) |
|
raise e |
|
return response |
|
|
|
|
|
class CompiledTimeout(Exception): |
|
pass |
|
|
|
|
|
def get_root_dir(): |
|
""" |
|
Returns the absolute path to the root directory of the repository as a string. |
|
|
|
This method is primarily used in order to locate the binaries at the root of the |
|
repository. |
|
""" |
|
return os.path.join(os.path.dirname(__file__), os.pardir) |
|
|
|
|
|
def get_data_dir(): |
|
""" |
|
Returns the absolute path to the data directory of the repository as a string. |
|
""" |
|
return os.path.join(get_root_dir(), 'data') |
|
|
|
|
|
def callCompiled(f, *arguments, **keywordArguments): |
|
import dill |
|
|
|
pypyArgs = [] |
|
profile = keywordArguments.pop('profile', None) |
|
if profile: |
|
pypyArgs = ['-m', 'vmprof', '-o', profile] |
|
|
|
PIDCallBack = keywordArguments.pop("PIDCallBack", None) |
|
|
|
timeout = keywordArguments.pop('compiledTimeout', None) |
|
|
|
|
|
compiled_driver_file = os.path.join(get_root_dir(), 'bin', 'compiledDriver.py') |
|
p = subprocess.Popen(['pypy3'] + pypyArgs + [compiled_driver_file], |
|
stdin=subprocess.PIPE, stdout=subprocess.PIPE) |
|
|
|
|
|
if PIDCallBack is not None: |
|
PIDCallBack(p.pid) |
|
|
|
request = { |
|
"function": f, |
|
"arguments": arguments, |
|
"keywordArguments": keywordArguments, |
|
} |
|
start = time.time() |
|
dill.dump(request, p.stdin) |
|
|
|
|
|
p.stdin.flush() |
|
|
|
|
|
|
|
|
|
dt = time.time() - start |
|
if dt > 1: |
|
eprint("(Python side of compiled driver: SLOW) Wrote serialized message for {} in time {}".format( |
|
f.__name__, |
|
dt)) |
|
|
|
if timeout is None: |
|
success, result = dill.load(p.stdout) |
|
else: |
|
eprint("Running with timeout", timeout) |
|
|
|
def timeoutCallBack(_1, _2): raise CompiledTimeout() |
|
signal.signal(signal.SIGALRM, timeoutCallBack) |
|
signal.alarm(int(math.ceil(timeout))) |
|
try: |
|
success, result = dill.load(p.stdout) |
|
signal.alarm(0) |
|
except CompiledTimeout: |
|
|
|
p.kill() |
|
raise CompiledTimeout() |
|
|
|
if not success: |
|
sys.exit(1) |
|
|
|
return result |
|
|
|
|
|
class timing(object): |
|
def __init__(self, message): |
|
self.message = message |
|
|
|
def __enter__(self): |
|
self.start = time.time() |
|
return self |
|
|
|
def __exit__(self, type, value, traceback): |
|
dt = time.time() - self.start |
|
if isinstance(self.message, str): message = self.message |
|
elif callable(self.message): message = self.message(dt) |
|
else: assert False, "Timing message should be string function" |
|
eprint("%s in %.1f seconds" % (message, dt)) |
|
|
|
class random_seed(object): |
|
def __init__(self, seed): |
|
self.seed = seed |
|
|
|
def __enter__(self): |
|
self._oldSeed = random.getstate() |
|
random.seed(self.seed) |
|
return self |
|
|
|
def __exit__(self, type, value, traceback): |
|
random.setstate(self._oldSeed) |
|
|
|
|
|
def randomPermutation(l): |
|
import random |
|
l = list(l) |
|
random.shuffle(l) |
|
return l |
|
|
|
|
|
def batches(data, size=1): |
|
import random |
|
|
|
data = list(data) |
|
random.shuffle(data) |
|
|
|
start = 0 |
|
while start < len(data): |
|
yield data[start:size + start] |
|
start += size |
|
|
|
|
|
def sampleDistribution(d): |
|
""" |
|
Expects d to be a list of tuples |
|
The first element should be the probability |
|
If the tuples are of length 2 then it returns the second element |
|
Otherwise it returns the suffix tuple |
|
""" |
|
import random |
|
|
|
z = float(sum(t[0] for t in d)) |
|
if z == 0.: |
|
eprint("sampleDistribution: z = 0") |
|
eprint(d) |
|
r = random.random() |
|
u = 0. |
|
for index, t in enumerate(d): |
|
p = t[0] / z |
|
|
|
if r <= u + p or index == len(d) - 1: |
|
if len(t) <= 2: |
|
return t[1] |
|
else: |
|
return t[1:] |
|
u += p |
|
|
|
assert False |
|
|
|
|
|
def sampleLogDistribution(d): |
|
""" |
|
Expects d to be a list of tuples |
|
The first element should be the log probability |
|
If the tuples are of length 2 then it returns the second element |
|
Otherwise it returns the suffix tuple |
|
""" |
|
import random |
|
|
|
z = lse([t[0] for t in d]) |
|
r = random.random() |
|
u = 0. |
|
for t in d: |
|
p = math.exp(t[0] - z) |
|
if r < u + p: |
|
if len(t) <= 2: |
|
return t[1] |
|
else: |
|
return t[1:] |
|
u += p |
|
assert False |
|
|
|
|
|
def testTrainSplit(x, trainingFraction, seed=0): |
|
if trainingFraction > 1.1: |
|
|
|
|
|
trainingFraction = float(trainingFraction) / len(x) |
|
needToTrain = { j for j, d in enumerate(x) |
|
if hasattr(d, 'mustTrain') and d.mustTrain } |
|
mightTrain = [j for j in range(len(x)) if j not in needToTrain] |
|
|
|
trainingSize = max(0, int(len(x) * trainingFraction - len(needToTrain))) |
|
|
|
import random |
|
random.seed(seed) |
|
random.shuffle(mightTrain) |
|
training = set(mightTrain[:trainingSize]) | needToTrain |
|
|
|
train = [t for j, t in enumerate(x) if j in training] |
|
test = [t for j, t in enumerate(x) if j not in training] |
|
return test, train |
|
|
|
|
|
def numberOfCPUs(): |
|
import multiprocessing |
|
return multiprocessing.cpu_count() |
|
|
|
|
|
def loadPickle(f): |
|
with open(f, 'rb') as handle: |
|
d = pickle.load(handle) |
|
return d |
|
|
|
def dumpPickle(o,f): |
|
with open(f, 'wb') as handle: |
|
pickle.dump(o,handle) |
|
|
|
|
|
def fst(l): |
|
for v in l: |
|
return v |
|
|
|
|
|
def mean(l): |
|
n = 0 |
|
t = None |
|
for x in l: |
|
if t is None: |
|
t = x |
|
else: |
|
t = t + x |
|
n += 1 |
|
|
|
if n == 0: |
|
eprint("warning: asked to calculate the mean of an empty list. returning zero.") |
|
return 0 |
|
return t / float(n) |
|
|
|
|
|
def variance(l): |
|
m = mean(l) |
|
return sum((x - m)**2 for x in l) / len(l) |
|
|
|
|
|
def standardDeviation(l): return variance(l)**0.5 |
|
|
|
|
|
def median(l): |
|
if len(l) <= 0: |
|
return None |
|
l = sorted(l) |
|
if len(l) % 2 == 1: |
|
return l[len(l) // 2] |
|
return 0.5 * (l[len(l) // 2] + l[len(l) // 2 - 1]) |
|
|
|
def percentile(l, p): |
|
l = sorted(l) |
|
j = int(len(l)*p) |
|
if j < len(l): |
|
return l[j] |
|
return 0 |
|
|
|
def makeTemporaryFile(directory="/tmp"): |
|
import tempfile |
|
fd,p = tempfile.mkstemp(dir=directory) |
|
os.close(fd) |
|
return p |
|
|
|
class Stopwatch(): |
|
def __init__(self): |
|
self._elapsed = 0. |
|
self.running = False |
|
self._latestStart = None |
|
|
|
def start(self): |
|
if self.running: |
|
eprint( |
|
"(stopwatch: attempted to start an already running stopwatch. Silently ignoring.)") |
|
return |
|
self.running = True |
|
self._latestStart = time.time() |
|
|
|
def stop(self): |
|
if not self.running: |
|
eprint( |
|
"(stopwatch: attempted to stop a stopwatch that is not running. Silently ignoring.)") |
|
return |
|
self.running = False |
|
self._elapsed += time.time() - self._latestStart |
|
self._latestStart = None |
|
|
|
@property |
|
def elapsed(self): |
|
e = self._elapsed |
|
if self.running: |
|
e = e + time.time() - self._latestStart |
|
return e |
|
|
|
|
|
def userName(): |
|
import getpass |
|
return getpass.getuser() |
|
|
|
|
|
def hostname(): |
|
import socket |
|
return socket.gethostname() |
|
|
|
|
|
def getPID(): |
|
return os.getpid() |
|
|
|
|
|
def CPULoad(): |
|
try: |
|
import psutil |
|
except BaseException: |
|
return "unknown - install psutil" |
|
return psutil.cpu_percent() |
|
|
|
|
|
def flushEverything(): |
|
sys.stdout.flush() |
|
sys.stderr.flush() |
|
|
|
|
|
class RunWithTimeout(Exception): |
|
pass |
|
|
|
|
|
def runWithTimeout(k, timeout): |
|
if timeout is None: return k() |
|
def timeoutCallBack(_1,_2): |
|
raise RunWithTimeout() |
|
signal.signal(signal.SIGPROF, timeoutCallBack) |
|
signal.setitimer(signal.ITIMER_PROF, timeout) |
|
|
|
try: |
|
result = k() |
|
signal.signal(signal.SIGPROF, lambda *_:None) |
|
signal.setitimer(signal.ITIMER_PROF, 0) |
|
return result |
|
except RunWithTimeout: |
|
signal.signal(signal.SIGPROF, lambda *_:None) |
|
signal.setitimer(signal.ITIMER_PROF, 0) |
|
raise RunWithTimeout() |
|
except: |
|
signal.signal(signal.SIGPROF, lambda *_:None) |
|
signal.setitimer(signal.ITIMER_PROF, 0) |
|
raise |
|
|
|
|
|
def crossProduct(a, b): |
|
b = list(b) |
|
for x in a: |
|
for y in b: |
|
yield x, y |
|
|
|
|
|
class PQ(object): |
|
"""why the fuck does Python not wrap this in a class""" |
|
|
|
def __init__(self): |
|
self.h = [] |
|
self.index2value = {} |
|
self.nextIndex = 0 |
|
|
|
def push(self, priority, v): |
|
self.index2value[self.nextIndex] = v |
|
heapq.heappush(self.h, (-priority, self.nextIndex)) |
|
self.nextIndex += 1 |
|
|
|
def popMaximum(self): |
|
i = heapq.heappop(self.h)[1] |
|
v = self.index2value[i] |
|
del self.index2value[i] |
|
return v |
|
|
|
def __iter__(self): |
|
for _, v in self.h: |
|
yield self.index2value[v] |
|
|
|
def __len__(self): return len(self.h) |
|
|
|
class UnionFind: |
|
class Class: |
|
def __init__(self, x): |
|
self.members = {x} |
|
self.leader = None |
|
def chase(self): |
|
k = self |
|
while k.leader is not None: |
|
k = k.leader |
|
self.leader = k |
|
return k |
|
|
|
def __init__(self): |
|
|
|
self.classes = {} |
|
def unify(self,x,y): |
|
k1 = self.classes[x].chase() |
|
k2 = self.classes[y].chase() |
|
|
|
k1.leader = k2 |
|
k2.members |= k1.members |
|
k1.members = None |
|
self.classes[x] = k2 |
|
self.classes[y] = k2 |
|
return k2 |
|
def newClass(self,x): |
|
if x not in self.classes: |
|
n = Class(x) |
|
self.classes[x] = n |
|
|
|
def otherMembers(self,x): |
|
k = self.classes[x].chase() |
|
self.classes[x] = k |
|
return k.members |
|
|
|
|
|
def substringOccurrences(ss, s): |
|
return sum(s[i:].startswith(ss) for i in range(len(s))) |
|
|
|
|
|
def normal(s=1., m=0.): |
|
u = random.random() |
|
v = random.random() |
|
|
|
n = math.sqrt(-2.0 * log(u)) * math.cos(2.0 * math.pi * v) |
|
|
|
return s * n + m |
|
|
|
def powerOfTen(n): |
|
if n <= 0: |
|
return False |
|
while True: |
|
if n == 1: |
|
return True |
|
if n % 10 != 0: |
|
return False |
|
n = n / 10 |
|
|
|
def powerOf(p, n): |
|
if n <= 0: |
|
return False |
|
while True: |
|
if n == 1: |
|
return True |
|
if n % p != 0: |
|
return False |
|
n = n / p |
|
|
|
|
|
def getThisMemoryUsage(): |
|
import os |
|
import psutil |
|
process = psutil.Process(os.getpid()) |
|
return process.memory_info().rss |
|
def getMemoryUsageFraction(): |
|
import psutil |
|
return psutil.virtual_memory().percent |
|
def howManyGigabytesOfMemory(): |
|
import psutil |
|
return psutil.virtual_memory().total/10**9 |
|
|
|
def tuplify(x): |
|
if isinstance(x,(list,tuple)): return tuple(tuplify(z) for z in x) |
|
return x |
|
|
|
|
|
def makeNiceArray(l, columns=None): |
|
n = columns or int(len(l)**0.5) |
|
a = [] |
|
while l: |
|
a.append(l[:n]) |
|
l = l[n:] |
|
return a |
|
def montageMatrix(matrix): |
|
import numpy as np |
|
arrays = matrix |
|
m = max(len(t) for t in arrays) |
|
|
|
size = arrays[0][0].shape |
|
tp = arrays[0][0].dtype |
|
|
|
arrays = [np.concatenate(ts + [np.zeros(size, dtype=tp)] * (m - len(ts)), axis=1) for ts in arrays] |
|
arrays = np.concatenate(arrays, axis=0) |
|
return arrays |
|
def montage(arrays, columns=None): |
|
return montageMatrix(makeNiceArray(arrays, columns=columns)) |
|
|
|
def showArrayAsImage(a): |
|
from pylab import imshow,show |
|
imshow(a) |
|
show() |
|
|
|
|
|
|
|
class ParseFailure(Exception): |
|
pass |
|
|
|
def parseSExpression(s): |
|
s = s.strip() |
|
def p(n): |
|
while n <= len(s) and s[n].isspace(): n += 1 |
|
if n == len(s): raise ParseFailure(s) |
|
if s[n] == '#': |
|
e,n = p(n + 1) |
|
return ['#', e],n |
|
if s[n] == '(': |
|
l = [] |
|
n += 1 |
|
while True: |
|
x,n = p(n) |
|
l.append(x) |
|
while n <= len(s) and s[n].isspace(): n += 1 |
|
if n == len(s): raise ParseFailure(s) |
|
if s[n] == ')': |
|
n += 1 |
|
break |
|
return l,n |
|
name = [] |
|
while n < len(s) and not s[n].isspace() and s[n] not in '()': |
|
name.append(s[n]) |
|
n += 1 |
|
name = "".join(name) |
|
return name,n |
|
e,n = p(0) |
|
if n == len(s): |
|
return e |
|
raise ParseFailure(s) |
|
|
|
|
|
def diffuseImagesOutward(imageCoordinates, labelCoordinates, d, |
|
maximumRadius = 2.5, minimumRadius = 1.5): |
|
import numpy as np |
|
|
|
n = imageCoordinates.shape[0] |
|
|
|
|
|
def _constrainRadii(p): |
|
r = (p*p).sum() |
|
if r > maximumRadius: |
|
return maximumRadius*p/(r**0.5) |
|
if r < minimumRadius: |
|
return minimumRadius*p/(r**0.5) |
|
return p |
|
def constrainRadii(): |
|
for j in range(n): |
|
d[j,:] = _constrainRadii(d[j,:]) |
|
|
|
for _ in range(10): |
|
for i in range(n): |
|
force = np.array([0.,0.]) |
|
for j in range(n): |
|
if i == j: continue |
|
p1 = imageCoordinates[i] + d[i] |
|
p2 = imageCoordinates[j] + d[j] |
|
l = ((p1 - p2)**2).sum()**0.5 |
|
if l > 1.5: continue |
|
force += (p1 - p2)/l/max(l,0.2) |
|
if force.sum() > 0: |
|
force = force/( (force*force).sum()**0.5) |
|
d[i] += force |
|
constrainRadii() |
|
return d |
|
|
|
if __name__ == "__main__": |
|
def f(n): |
|
if n == 0: return None |
|
return [f(n - 1),f(n - 1)] |
|
z = f(22) |
|
eprint(getMemoryUsageFraction().percent) |
|
eprint(getThisMemoryUsage()) |
|
|