dream-coder / dreamcoder /utilities.py
Fraser-Greenlee
add dataset code
3bdb76c
import inspect
import signal
import random
import time
import traceback
import sys
import os
import subprocess
import math
import pickle as pickle
from itertools import chain
import heapq
import hashlib
def computeMD5hash(my_string):
#https://stackoverflow.com/questions/13259691/convert-string-to-md5
m = hashlib.md5()
m.update(my_string.encode('utf-8'))
return m.hexdigest()
class Thunk(object):
# A class for lazy evaluation
def __init__(self, thing):
self.thing = thing
self.evaluated = False
def force(self):
if self.evaluated:
return self.thing
else:
self.thing = self.thing()
self.evaluated = True
return self.thing
def cindex(i): return lambda a: a[i]
class ConstantFunction:
def __init__(self,v): self.v = v
def __call__(self,*a,**k): return self.v
def eprint(*args, **kwargs):
print(*args, file=sys.stderr, **kwargs)
flushEverything()
class Bunch(object):
def __init__(self, d):
self.__dict__.update(d)
def __setitem__(self, key, item):
self.__dict__[key] = item
def __getitem__(self, key):
return self.__dict__[key]
def curry(fn):
"""Curries a function. Hacky way to return a curried version of functions with arbitrary #s of args. """
def make_curry_fn(signature):
"""Redefines a currying function with the appropriate arguments. Hacky."""
tmp_curry = 'def tmp_curry(f): return '
tmp_curry += " ".join(['lambda %s: ' % argname for argname in signature.parameters])
tmp_curry += 'f'
tmp_curry += str(signature)
return tmp_curry
exec(make_curry_fn(inspect.signature(fn)), globals())
return tmp_curry(fn)
class Curried:
def __init__(self, f, arguments=None, arity=None):
if arity is None:
arity = len(inspect.getargspec(f)[0])
self.f = f
self.arity = arity
if arguments is None: arguments = []
self.arguments = arguments
def __call__(self, x):
arguments = self.arguments + [x]
if len(arguments) == self.arity:
return self.f(*arguments)
else:
return Curried(self.f, arguments=arguments, arity=self.arity)
def __str__(self):
if len(self.arguments) == 0:
return f"Curried({self.f}/{self.arity})"
else:
return f"Curried({self.f}/{self.arity}, {', '.join(map(str,self.arguments))})"
def __repr__(self):
return str(self)
def hashable(v):
"""Determine whether `v` can be hashed."""
try:
hash(v)
except TypeError:
return False
return True
def flatten(x, abort=lambda x: False):
"""Recursively unroll iterables."""
if abort(x):
yield x
return
try:
yield from chain(*(flatten(i, abort) for i in x))
except TypeError: # not iterable
yield x
def growImage(i, iterations=2):
import numpy as np
for _ in range(iterations):
ip = np.zeros(i.shape)
# assume it is monochromatic and get the color
c = np.array([i[:,:,j].max()
for j in range(4) ])
# assume that the alpha channel indicates where the foreground is
foreground = i[:,:,3] > 0
foreground = foreground + \
np.pad(foreground, ((0,1),(0,0)), mode='constant')[1:,:] +\
np.pad(foreground, ((0,0),(0,1)), mode='constant')[:,1:] + \
np.pad(foreground, ((0,0),(1,0)), mode='constant')[:,:-1] + \
np.pad(foreground, ((1,0),(0,0)), mode='constant')[:-1,:]
ip[foreground] = c
i = ip
return ip
def summaryStatistics(n, times):
if len(times) == 0:
eprint(n, "no successful times to report statistics on!")
else:
eprint(n, "average: ", int(mean(times) + 0.5),
"sec.\tmedian:", int(median(times) + 0.5),
"\tmax:", int(max(times) + 0.5),
"\tstandard deviation", int(standardDeviation(times) + 0.5))
def updateTaskSummaryMetrics(taskSummaryMetrics, newMetricsDict, key):
"""Updates a taskSummaryMetrics dict from tasks -> metrics with new metrics under the given key."""
for task in newMetricsDict:
if task in taskSummaryMetrics:
taskSummaryMetrics[task][key] = newMetricsDict[task]
else:
taskSummaryMetrics[task] = {key : newMetricsDict[task]}
NEGATIVEINFINITY = float('-inf')
POSITIVEINFINITY = float('inf')
PARALLELMAPDATA = None
PARALLELBASESEED = None
def parallelMap(numberOfCPUs, f, *xs, chunksize=None, maxtasksperchild=None, memorySensitive=False,
seedRandom=False):
"""seedRandom: Should each parallel worker be given a different random seed?"""
global PARALLELMAPDATA
global PARALLELBASESEED
if memorySensitive:
memoryUsage = getMemoryUsageFraction()/100.
correctedCPUs = max(1,
min(int(0.9/memoryUsage),numberOfCPUs))
assert correctedCPUs <= numberOfCPUs
assert correctedCPUs >= 1
if correctedCPUs < numberOfCPUs:
eprint("In order to not use all of the memory on the machine (%f gb), we are limiting this parallel map to only use %d CPUs"%(howManyGigabytesOfMemory(),correctedCPUs))
numberOfCPUs = correctedCPUs
if numberOfCPUs == 1:
return list(map(f, *xs))
n = len(xs[0])
for x in xs:
assert len(x) == n
assert PARALLELMAPDATA is None
PARALLELMAPDATA = (f, xs)
assert PARALLELBASESEED is None
if seedRandom:
PARALLELBASESEED = random.random()
from multiprocessing import Pool
# Randomize the order in case easier ones come earlier or later
permutation = list(range(n))
random.shuffle(permutation)
inversePermutation = dict(zip(permutation, range(n)))
# Batch size of jobs as they are sent to processes
if chunksize is None:
chunksize = max(1, n // (numberOfCPUs * 2))
pool = Pool(numberOfCPUs, maxtasksperchild=maxtasksperchild)
ys = pool.map(parallelMapCallBack, permutation,
chunksize=chunksize)
pool.terminate()
PARALLELMAPDATA = None
PARALLELBASESEED = None
return [ys[inversePermutation[j]] for j in range(n)]
def parallelMapCallBack(j):
global PARALLELMAPDATA
global PARALLELBASESEED
if PARALLELBASESEED is not None:
random.seed(PARALLELBASESEED + j)
f, xs = PARALLELMAPDATA
try:
return f(*[x[j] for x in xs])
except Exception as e:
eprint(
"Exception in worker during lightweight parallel map:\n%s" %
(traceback.format_exc()))
raise e
def log(x):
t = type(x)
if t == int or t == float:
if x == 0:
return NEGATIVEINFINITY
return math.log(x)
return x.log()
def exp(x):
t = type(x)
if t == int or t == float:
return math.exp(x)
return x.exp()
def lse(x, y=None):
if y is None:
largest = None
if len(x) == 0:
raise Exception('LSE: Empty sequence')
if len(x) == 1:
return x[0]
# If these are just numbers...
t = type(x[0])
if t == int or t == float:
largest = max(*x)
return largest + math.log(sum(math.exp(z - largest) for z in x))
#added clause to avoid zero -dim tensor problem
import torch
if t == torch.Tensor and x[0].size() == torch.Size([]):
return torchSoftMax([datum.view(1) for datum in x])
# Must be torch
return torchSoftMax(x)
else:
if x is NEGATIVEINFINITY:
return y
if y is NEGATIVEINFINITY:
return x
tx = type(x)
ty = type(y)
if (ty == int or ty == float) and (tx == int or tx == float):
if x > y:
return x + math.log(1. + math.exp(y - x))
else:
return y + math.log(1. + math.exp(x - y))
return torchSoftMax(x, y)
def torchSoftMax(x, y=None):
from torch.nn.functional import log_softmax
import torch
if y is None:
if isinstance(x, list):
x = torch.cat(x)
return (x - log_softmax(x, dim=0))[0]
x = torch.cat((x, y))
# this is so stupid
return (x - log_softmax(x, dim=0))[0]
def invalid(x):
return math.isinf(x) or math.isnan(x)
def valid(x): return not invalid(x)
def forkCallBack(x):
[f, a, k] = x
try:
return f(*a, **k)
except Exception as e:
eprint(
"Exception in worker during forking:\n%s" %
(traceback.format_exc()))
raise e
def callFork(f, *arguments, **kw):
"""Forks a new process to execute the call. Blocks until the call completes."""
global FORKPARAMETERS
from multiprocessing import Pool
workers = Pool(1)
ys = workers.map(forkCallBack, [[f, arguments, kw]])
workers.terminate()
assert len(ys) == 1
return ys[0]
PARALLELPROCESSDATA = None
def launchParallelProcess(f, *a, **k):
global PARALLELPROCESSDATA
PARALLELPROCESSDATA = [f, a, k]
from multiprocessing import Process
p = Process(target=_launchParallelProcess, args=tuple([]))
p.start()
PARALLELPROCESSDATA = None
return p
def _launchParallelProcess():
global PARALLELPROCESSDATA
[f, a, k] = PARALLELPROCESSDATA
try:
f(*a, **k)
except Exception as e:
eprint(
"Exception in worker during forking:\n%s" %
(traceback.format_exc()))
raise e
def jsonBinaryInvoke(binary, message):
import json
import subprocess
import os
message = json.dumps(message)
try:
process = subprocess.Popen(binary,
stdin=subprocess.PIPE,
stdout=subprocess.PIPE)
response, error = process.communicate(bytes(message, encoding="utf-8"))
except OSError as exc:
raise exc
try:
response = json.loads(response.decode("utf-8"))
except Exception as e:
eprint("Could not parse json.")
with open("/tmp/_message","w") as handle:
handle.write(message)
with open("/tmp/_response","w") as handle:
handle.write(response.decode("utf-8"))
raise e
return response
class CompiledTimeout(Exception):
pass
def get_root_dir():
"""
Returns the absolute path to the root directory of the repository as a string.
This method is primarily used in order to locate the binaries at the root of the
repository.
"""
return os.path.join(os.path.dirname(__file__), os.pardir)
def get_data_dir():
"""
Returns the absolute path to the data directory of the repository as a string.
"""
return os.path.join(get_root_dir(), 'data')
def callCompiled(f, *arguments, **keywordArguments):
import dill
pypyArgs = []
profile = keywordArguments.pop('profile', None)
if profile:
pypyArgs = ['-m', 'vmprof', '-o', profile]
PIDCallBack = keywordArguments.pop("PIDCallBack", None)
timeout = keywordArguments.pop('compiledTimeout', None)
# Use absolute paths.
compiled_driver_file = os.path.join(get_root_dir(), 'bin', 'compiledDriver.py')
p = subprocess.Popen(['pypy3'] + pypyArgs + [compiled_driver_file],
stdin=subprocess.PIPE, stdout=subprocess.PIPE)
if PIDCallBack is not None:
PIDCallBack(p.pid)
request = {
"function": f,
"arguments": arguments,
"keywordArguments": keywordArguments,
}
start = time.time()
dill.dump(request, p.stdin)
#p.stdin.write(request)
p.stdin.flush()
#p.stdin.close()
dt = time.time() - start
if dt > 1:
eprint("(Python side of compiled driver: SLOW) Wrote serialized message for {} in time {}".format(
f.__name__,
dt))
if timeout is None:
success, result = dill.load(p.stdout)
else:
eprint("Running with timeout", timeout)
def timeoutCallBack(_1, _2): raise CompiledTimeout()
signal.signal(signal.SIGALRM, timeoutCallBack)
signal.alarm(int(math.ceil(timeout)))
try:
success, result = dill.load(p.stdout)
signal.alarm(0)
except CompiledTimeout:
# Kill the process
p.kill()
raise CompiledTimeout()
if not success:
sys.exit(1)
return result
class timing(object):
def __init__(self, message):
self.message = message
def __enter__(self):
self.start = time.time()
return self
def __exit__(self, type, value, traceback):
dt = time.time() - self.start
if isinstance(self.message, str): message = self.message
elif callable(self.message): message = self.message(dt)
else: assert False, "Timing message should be string function"
eprint("%s in %.1f seconds" % (message, dt))
class random_seed(object):
def __init__(self, seed):
self.seed = seed
def __enter__(self):
self._oldSeed = random.getstate()
random.seed(self.seed)
return self
def __exit__(self, type, value, traceback):
random.setstate(self._oldSeed)
def randomPermutation(l):
import random
l = list(l)
random.shuffle(l)
return l
def batches(data, size=1):
import random
# Randomly permute the data
data = list(data)
random.shuffle(data)
start = 0
while start < len(data):
yield data[start:size + start]
start += size
def sampleDistribution(d):
"""
Expects d to be a list of tuples
The first element should be the probability
If the tuples are of length 2 then it returns the second element
Otherwise it returns the suffix tuple
"""
import random
z = float(sum(t[0] for t in d))
if z == 0.:
eprint("sampleDistribution: z = 0")
eprint(d)
r = random.random()
u = 0.
for index, t in enumerate(d):
p = t[0] / z
# This extra condition is needed for floating-point bullshit
if r <= u + p or index == len(d) - 1:
if len(t) <= 2:
return t[1]
else:
return t[1:]
u += p
assert False
def sampleLogDistribution(d):
"""
Expects d to be a list of tuples
The first element should be the log probability
If the tuples are of length 2 then it returns the second element
Otherwise it returns the suffix tuple
"""
import random
z = lse([t[0] for t in d])
r = random.random()
u = 0.
for t in d:
p = math.exp(t[0] - z)
if r < u + p:
if len(t) <= 2:
return t[1]
else:
return t[1:]
u += p
assert False
def testTrainSplit(x, trainingFraction, seed=0):
if trainingFraction > 1.1:
# Assume that the training fraction is actually the number of tasks
# that we want to train on
trainingFraction = float(trainingFraction) / len(x)
needToTrain = { j for j, d in enumerate(x)
if hasattr(d, 'mustTrain') and d.mustTrain }
mightTrain = [j for j in range(len(x)) if j not in needToTrain]
trainingSize = max(0, int(len(x) * trainingFraction - len(needToTrain)))
import random
random.seed(seed)
random.shuffle(mightTrain)
training = set(mightTrain[:trainingSize]) | needToTrain
train = [t for j, t in enumerate(x) if j in training]
test = [t for j, t in enumerate(x) if j not in training]
return test, train
def numberOfCPUs():
import multiprocessing
return multiprocessing.cpu_count()
def loadPickle(f):
with open(f, 'rb') as handle:
d = pickle.load(handle)
return d
def dumpPickle(o,f):
with open(f, 'wb') as handle:
pickle.dump(o,handle)
def fst(l):
for v in l:
return v
def mean(l):
n = 0
t = None
for x in l:
if t is None:
t = x
else:
t = t + x
n += 1
if n == 0:
eprint("warning: asked to calculate the mean of an empty list. returning zero.")
return 0
return t / float(n)
def variance(l):
m = mean(l)
return sum((x - m)**2 for x in l) / len(l)
def standardDeviation(l): return variance(l)**0.5
def median(l):
if len(l) <= 0:
return None
l = sorted(l)
if len(l) % 2 == 1:
return l[len(l) // 2]
return 0.5 * (l[len(l) // 2] + l[len(l) // 2 - 1])
def percentile(l, p):
l = sorted(l)
j = int(len(l)*p)
if j < len(l):
return l[j]
return 0
def makeTemporaryFile(directory="/tmp"):
import tempfile
fd,p = tempfile.mkstemp(dir=directory)
os.close(fd)
return p
class Stopwatch():
def __init__(self):
self._elapsed = 0.
self.running = False
self._latestStart = None
def start(self):
if self.running:
eprint(
"(stopwatch: attempted to start an already running stopwatch. Silently ignoring.)")
return
self.running = True
self._latestStart = time.time()
def stop(self):
if not self.running:
eprint(
"(stopwatch: attempted to stop a stopwatch that is not running. Silently ignoring.)")
return
self.running = False
self._elapsed += time.time() - self._latestStart
self._latestStart = None
@property
def elapsed(self):
e = self._elapsed
if self.running:
e = e + time.time() - self._latestStart
return e
def userName():
import getpass
return getpass.getuser()
def hostname():
import socket
return socket.gethostname()
def getPID():
return os.getpid()
def CPULoad():
try:
import psutil
except BaseException:
return "unknown - install psutil"
return psutil.cpu_percent()
def flushEverything():
sys.stdout.flush()
sys.stderr.flush()
class RunWithTimeout(Exception):
pass
def runWithTimeout(k, timeout):
if timeout is None: return k()
def timeoutCallBack(_1,_2):
raise RunWithTimeout()
signal.signal(signal.SIGPROF, timeoutCallBack)
signal.setitimer(signal.ITIMER_PROF, timeout)
try:
result = k()
signal.signal(signal.SIGPROF, lambda *_:None)
signal.setitimer(signal.ITIMER_PROF, 0)
return result
except RunWithTimeout:
signal.signal(signal.SIGPROF, lambda *_:None)
signal.setitimer(signal.ITIMER_PROF, 0)
raise RunWithTimeout()
except:
signal.signal(signal.SIGPROF, lambda *_:None)
signal.setitimer(signal.ITIMER_PROF, 0)
raise
def crossProduct(a, b):
b = list(b)
for x in a:
for y in b:
yield x, y
class PQ(object):
"""why the fuck does Python not wrap this in a class"""
def __init__(self):
self.h = []
self.index2value = {}
self.nextIndex = 0
def push(self, priority, v):
self.index2value[self.nextIndex] = v
heapq.heappush(self.h, (-priority, self.nextIndex))
self.nextIndex += 1
def popMaximum(self):
i = heapq.heappop(self.h)[1]
v = self.index2value[i]
del self.index2value[i]
return v
def __iter__(self):
for _, v in self.h:
yield self.index2value[v]
def __len__(self): return len(self.h)
class UnionFind:
class Class:
def __init__(self, x):
self.members = {x}
self.leader = None
def chase(self):
k = self
while k.leader is not None:
k = k.leader
self.leader = k
return k
def __init__(self):
# Map from keys to classes
self.classes = {}
def unify(self,x,y):
k1 = self.classes[x].chase()
k2 = self.classes[y].chase()
# k2 will be the new leader
k1.leader = k2
k2.members |= k1.members
k1.members = None
self.classes[x] = k2
self.classes[y] = k2
return k2
def newClass(self,x):
if x not in self.classes:
n = Class(x)
self.classes[x] = n
def otherMembers(self,x):
k = self.classes[x].chase()
self.classes[x] = k
return k.members
def substringOccurrences(ss, s):
return sum(s[i:].startswith(ss) for i in range(len(s)))
def normal(s=1., m=0.):
u = random.random()
v = random.random()
n = math.sqrt(-2.0 * log(u)) * math.cos(2.0 * math.pi * v)
return s * n + m
def powerOfTen(n):
if n <= 0:
return False
while True:
if n == 1:
return True
if n % 10 != 0:
return False
n = n / 10
def powerOf(p, n):
if n <= 0:
return False
while True:
if n == 1:
return True
if n % p != 0:
return False
n = n / p
def getThisMemoryUsage():
import os
import psutil
process = psutil.Process(os.getpid())
return process.memory_info().rss
def getMemoryUsageFraction():
import psutil
return psutil.virtual_memory().percent
def howManyGigabytesOfMemory():
import psutil
return psutil.virtual_memory().total/10**9
def tuplify(x):
if isinstance(x,(list,tuple)): return tuple(tuplify(z) for z in x)
return x
# image montage!
def makeNiceArray(l, columns=None):
n = columns or int(len(l)**0.5)
a = []
while l:
a.append(l[:n])
l = l[n:]
return a
def montageMatrix(matrix):
import numpy as np
arrays = matrix
m = max(len(t) for t in arrays)
size = arrays[0][0].shape
tp = arrays[0][0].dtype
arrays = [np.concatenate(ts + [np.zeros(size, dtype=tp)] * (m - len(ts)), axis=1) for ts in arrays]
arrays = np.concatenate(arrays, axis=0)
return arrays
def montage(arrays, columns=None):
return montageMatrix(makeNiceArray(arrays, columns=columns))
def showArrayAsImage(a):
from pylab import imshow,show
imshow(a)
show()
class ParseFailure(Exception):
pass
def parseSExpression(s):
s = s.strip()
def p(n):
while n <= len(s) and s[n].isspace(): n += 1
if n == len(s): raise ParseFailure(s)
if s[n] == '#':
e,n = p(n + 1)
return ['#', e],n
if s[n] == '(':
l = []
n += 1
while True:
x,n = p(n)
l.append(x)
while n <= len(s) and s[n].isspace(): n += 1
if n == len(s): raise ParseFailure(s)
if s[n] == ')':
n += 1
break
return l,n
name = []
while n < len(s) and not s[n].isspace() and s[n] not in '()':
name.append(s[n])
n += 1
name = "".join(name)
return name,n
e,n = p(0)
if n == len(s):
return e
raise ParseFailure(s)
def diffuseImagesOutward(imageCoordinates, labelCoordinates, d,
maximumRadius = 2.5, minimumRadius = 1.5):
import numpy as np
n = imageCoordinates.shape[0]
#d = (np.random.rand(n,2)*2 - 1)*(maximumRadius/2 + minimumRadius/2)
def _constrainRadii(p):
r = (p*p).sum()
if r > maximumRadius:
return maximumRadius*p/(r**0.5)
if r < minimumRadius:
return minimumRadius*p/(r**0.5)
return p
def constrainRadii():
for j in range(n):
d[j,:] = _constrainRadii(d[j,:])
for _ in range(10):
for i in range(n):
force = np.array([0.,0.])
for j in range(n):
if i == j: continue
p1 = imageCoordinates[i] + d[i]
p2 = imageCoordinates[j] + d[j]
l = ((p1 - p2)**2).sum()**0.5
if l > 1.5: continue
force += (p1 - p2)/l/max(l,0.2)
if force.sum() > 0:
force = force/( (force*force).sum()**0.5)
d[i] += force
constrainRadii()
return d
if __name__ == "__main__":
def f(n):
if n == 0: return None
return [f(n - 1),f(n - 1)]
z = f(22)
eprint(getMemoryUsageFraction().percent)
eprint(getThisMemoryUsage())