import from S3
Browse files- mnist-text-no-spaces.py +156 -0
mnist-text-no-spaces.py
ADDED
@@ -0,0 +1,156 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
"""MNIST text dataset with no spaces."""
|
3 |
+
|
4 |
+
from __future__ import absolute_import, division, print_function
|
5 |
+
|
6 |
+
import json
|
7 |
+
import os
|
8 |
+
import math
|
9 |
+
|
10 |
+
import numpy as np
|
11 |
+
import datasets
|
12 |
+
|
13 |
+
|
14 |
+
_DESCRIPTION = """\
|
15 |
+
MNIST dataset adapted to a text-based representation.
|
16 |
+
|
17 |
+
This allows testing interpolation quality for Transformer-VAEs.
|
18 |
+
|
19 |
+
System is heavily inspired by Matthew Rayfield's work https://youtu.be/Z9K3cwSL6uM
|
20 |
+
|
21 |
+
Works by quantising each MNIST pixel into one of 64 characters.
|
22 |
+
Every sample has an up & down version to encourage the model to learn rotation invarient features.
|
23 |
+
|
24 |
+
Use `.array_to_text(` and `.text_to_array(` methods to test your generated data.
|
25 |
+
|
26 |
+
Removed spaces to get better BPE compression on sequences.
|
27 |
+
**Should only be used with a trained tokenizer.**
|
28 |
+
|
29 |
+
Data format:
|
30 |
+
- text: (30 x 28 tokens, 840 tokens total): Textual representation of MNIST digit, for example:
|
31 |
+
```
|
32 |
+
00down!!!!!!!!!!!!!!!!!!!!!!!!!!!!
|
33 |
+
01down!!!!!!!!!!!!!!!!!!!!!!!!!!!!
|
34 |
+
02down!!!!!!!!!!!!!!!!!!!!!!!!!!!!
|
35 |
+
03down!!!!!!!!!!!!!!!!!!!!!!!!!!!!
|
36 |
+
04down!!!!!!!!!!!!!!!!!!!!!!!!!!!!
|
37 |
+
05down!!!!!!!!!!!!!%%%@CL'Ja^@!!!!
|
38 |
+
06down!!!!!!!!(*8GK`````YL`]Q1!!!!
|
39 |
+
07down!!!!!!!-\\````````_855/*!!!!!
|
40 |
+
08down!!!!!!!%W`````RN^]!!!!!!!!!!
|
41 |
+
09down!!!!!!!!5H;``T#!+G!!!!!!!!!!
|
42 |
+
10down!!!!!!!!!$!G`7!!!!!!!!!!!!!!
|
43 |
+
11down!!!!!!!!!!!C`P!!!!!!!!!!!!!!
|
44 |
+
12down!!!!!!!!!!!#P`2!!!!!!!!!!!!!
|
45 |
+
13down!!!!!!!!!!!!)]YI<!!!!!!!!!!!
|
46 |
+
14down!!!!!!!!!!!!!5]``>'!!!!!!!!!
|
47 |
+
15down!!!!!!!!!!!!!!,O``F'!!!!!!!!
|
48 |
+
16down!!!!!!!!!!!!!!!%8``O!!!!!!!!
|
49 |
+
17down!!!!!!!!!!!!!!!!!_`_1!!!!!!!
|
50 |
+
18down!!!!!!!!!!!!!!,AN``T!!!!!!!!
|
51 |
+
19down!!!!!!!!!!!!*FZ```_N!!!!!!!!
|
52 |
+
20down!!!!!!!!!!'=X````S4!!!!!!!!!
|
53 |
+
21down!!!!!!!!&1V````R5!!!!!!!!!!!
|
54 |
+
22down!!!!!!%KW````Q5#!!!!!!!!!!!!
|
55 |
+
23down!!!!.LY````^B#!!!!!!!!!!!!!!
|
56 |
+
24down!!!!C```VBB%!!!!!!!!!!!!!!!!
|
57 |
+
25down!!!!!!!!!!!!!!!!!!!!!!!!!!!!
|
58 |
+
26down!!!!!!!!!!!!!!!!!!!!!!!!!!!!
|
59 |
+
27down!!!!!!!!!!!!!!!!!!!!!!!!!!!!
|
60 |
+
```
|
61 |
+
- label: Just a number with the texts matching label.
|
62 |
+
|
63 |
+
"""
|
64 |
+
|
65 |
+
_CITATION = """\
|
66 |
+
@dataset{dataset,
|
67 |
+
author = {Fraser Greenlee},
|
68 |
+
year = {2021},
|
69 |
+
month = {2},
|
70 |
+
pages = {},
|
71 |
+
title = {MNIST text dataset (no spaces).},
|
72 |
+
doi = {}
|
73 |
+
}
|
74 |
+
"""
|
75 |
+
|
76 |
+
_TRAIN_DOWNLOAD_URL = "https://raw.githubusercontent.com/Fraser-Greenlee/my-huggingface-datasets/master/data/mnist-text-no-spaces/train.json.zip"
|
77 |
+
_TEST_DOWNLOAD_URL = "https://raw.githubusercontent.com/Fraser-Greenlee/my-huggingface-datasets/master/data/mnist-text-no-spaces/test.json"
|
78 |
+
|
79 |
+
LABELS = list(range(10))
|
80 |
+
|
81 |
+
|
82 |
+
class MnistText(datasets.GeneratorBasedBuilder):
|
83 |
+
"""MNIST represented by text."""
|
84 |
+
def array_to_text(pixels: np.array):
|
85 |
+
'''
|
86 |
+
Takes a 2D array of pixel brightness, converts to text using 64 tokens to represent all brightness values.
|
87 |
+
'''
|
88 |
+
width = pixels.shape[0]
|
89 |
+
height = pixels.shape[1]
|
90 |
+
|
91 |
+
lines = []
|
92 |
+
|
93 |
+
for y in range(height):
|
94 |
+
split = ['%02d down' % y]
|
95 |
+
|
96 |
+
for x in range(width):
|
97 |
+
brightness = pixels[y, x]
|
98 |
+
|
99 |
+
mBrightness = math.floor(brightness * 64)
|
100 |
+
s = chr(mBrightness + 33)
|
101 |
+
|
102 |
+
split.append(s)
|
103 |
+
|
104 |
+
lines.append(' '.join(split))
|
105 |
+
|
106 |
+
reversed = []
|
107 |
+
for line in lines:
|
108 |
+
reversed.insert(0, (line.replace(' down ', ' up ', 1)))
|
109 |
+
|
110 |
+
return ['\n'.join(lines), '\n'.join(reversed)]
|
111 |
+
|
112 |
+
def text_to_array(text: str):
|
113 |
+
lines = text.split('\n')
|
114 |
+
pixels = np.zeros((len(lines), len(lines[0].split(' ')) - 2))
|
115 |
+
|
116 |
+
for y, line in enumerate(lines):
|
117 |
+
tokens = line.split(' ')
|
118 |
+
assert(tokens[1] == 'down')
|
119 |
+
pixel_tokens = tokens[2:]
|
120 |
+
for x, token in enumerate(pixel_tokens):
|
121 |
+
pixels[y, x] = (ord(token) - 33) / 64
|
122 |
+
|
123 |
+
return pixels
|
124 |
+
|
125 |
+
def _info(self):
|
126 |
+
return datasets.DatasetInfo(
|
127 |
+
description=_DESCRIPTION,
|
128 |
+
features=datasets.Features(
|
129 |
+
{
|
130 |
+
'label': datasets.features.ClassLabel(names=LABELS),
|
131 |
+
'text': datasets.Value("string"),
|
132 |
+
}
|
133 |
+
),
|
134 |
+
homepage="https://github.com/Fraser-Greenlee/my-huggingface-datasets",
|
135 |
+
citation=_CITATION,
|
136 |
+
)
|
137 |
+
|
138 |
+
def _split_generators(self, dl_manager):
|
139 |
+
train_path = dl_manager.download_and_extract(_TRAIN_DOWNLOAD_URL)
|
140 |
+
test_path = dl_manager.download_and_extract(_TEST_DOWNLOAD_URL)
|
141 |
+
return [
|
142 |
+
datasets.SplitGenerator(
|
143 |
+
name=datasets.Split.TRAIN, gen_kwargs={"filepath": os.path.join(train_path, 'train.json')}
|
144 |
+
),
|
145 |
+
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": test_path}),
|
146 |
+
]
|
147 |
+
|
148 |
+
def _generate_examples(self, filepath):
|
149 |
+
"""Generate examples."""
|
150 |
+
with open(filepath, encoding="utf-8") as json_lines_file:
|
151 |
+
data = []
|
152 |
+
for line in json_lines_file:
|
153 |
+
data.append(json.loads(line))
|
154 |
+
|
155 |
+
for id_, row in enumerate(data):
|
156 |
+
yield id_, row
|