|
|
|
"""Compressed MNIST text dataset.""" |
|
|
|
from __future__ import absolute_import, division, print_function |
|
|
|
import json |
|
import os |
|
import math |
|
|
|
import numpy as np |
|
import datasets |
|
|
|
|
|
_DESCRIPTION = """\ |
|
MNIST dataset adapted to a text-based representation. |
|
|
|
*Modified images to be ~1/4 the original area.* |
|
Done by taking a max pool. |
|
|
|
This allows testing interpolation quality for Transformer-VAEs. |
|
|
|
System is heavily inspired by Matthew Rayfield's work https://youtu.be/Z9K3cwSL6uM |
|
|
|
Works by quantising each MNIST pixel into one of 64 characters. |
|
Every sample has an up & down version to encourage the model to learn rotation invarient features. |
|
|
|
Use `.array_to_text(` and `.text_to_array(` methods to test your generated data. |
|
|
|
Data format: |
|
- text: (16 x 14 tokens, 224 tokens total): Textual representation of MNIST digit, for example: |
|
``` |
|
00 down ! ! ! ! ! ! ! ! ! ! ! ! ! ! |
|
01 down ! ! ! ! ! ! ! ! ! ! ! ! ! ! |
|
02 down ! ! ! ! ! ! % % C L a ^ ! ! |
|
03 down ! ! ! - ` ` ` ` ` Y ` Q ! ! |
|
04 down ! ! ! % ` ` ` R ^ ! ! ! ! ! |
|
05 down ! ! ! ! $ G ` ! ! ! ! ! ! ! |
|
06 down ! ! ! ! ! # ` Y < ! ! ! ! ! |
|
07 down ! ! ! ! ! ! 5 ` ` F ! ! ! ! |
|
08 down ! ! ! ! ! ! ! % ` ` 1 ! ! ! |
|
09 down ! ! ! ! ! ! F ` ` ` ! ! ! ! |
|
10 down ! ! ! ! 1 ` ` ` ` 4 ! ! ! ! |
|
11 down ! ! L ` ` ` ` 5 ! ! ! ! ! ! |
|
12 down ! ! ` ` V B ! ! ! ! ! ! ! ! |
|
13 down ! ! ! ! ! ! ! ! ! ! ! ! ! ! |
|
``` |
|
- label: Just a number with the texts matching label. |
|
|
|
""" |
|
|
|
_CITATION = """\ |
|
@dataset{dataset, |
|
author = {Fraser Greenlee}, |
|
year = {2021}, |
|
month = {1}, |
|
pages = {}, |
|
title = {MNIST small text dataset.}, |
|
doi = {} |
|
} |
|
""" |
|
|
|
_TRAIN_DOWNLOAD_URL = "https://raw.githubusercontent.com/Fraser-Greenlee/my-huggingface-datasets/master/data/mnist-text-small/train.json.zip" |
|
_TEST_DOWNLOAD_URL = "https://raw.githubusercontent.com/Fraser-Greenlee/my-huggingface-datasets/master/data/mnist-text-small/test.json" |
|
|
|
LABELS = list(range(10)) |
|
CUSTOM_METHODS = ['array_to_text', 'text_to_array'] |
|
IMG_SIZE = (16, 14) |
|
|
|
|
|
class MnistTextSmall(datasets.GeneratorBasedBuilder): |
|
"""MNIST represented by text.""" |
|
|
|
def as_dataset(self, *args, **kwargs): |
|
f""" |
|
Return a Dataset for the specified split. |
|
|
|
Modified to add custom methods {CUSTOM_METHODS} to the dataset. |
|
This allows rendering the text as images & vice versa. |
|
""" |
|
a_dataset = super().as_dataset(*args, **kwargs) |
|
for method in CUSTOM_METHODS: |
|
setattr(a_dataset, f'custom_{method}', getattr(self, method)) |
|
return a_dataset |
|
|
|
@staticmethod |
|
def array_to_text(pixels: np.array): |
|
''' |
|
Takes a 2D array of pixel brightnesses and converts them to text. |
|
Uses 64 tokens to represent all brightness values. |
|
''' |
|
width = pixels.shape[0] |
|
height = pixels.shape[1] |
|
|
|
lines = [] |
|
|
|
for y in range(height): |
|
split = ['%02d down' % y] |
|
|
|
for x in range(width): |
|
brightness = pixels[y, x] |
|
|
|
mBrightness = math.floor(brightness * 64) |
|
s = chr(mBrightness + 33) |
|
|
|
split.append(s) |
|
|
|
lines.append(' '.join(split)) |
|
|
|
reversed = [] |
|
for line in lines: |
|
reversed.insert(0, (line.replace(' down ', ' up ', 1))) |
|
|
|
return ['\n'.join(lines), '\n'.join(reversed)] |
|
|
|
@staticmethod |
|
def text_to_array(text: str): |
|
''' |
|
Takes a text sequences and tries to convert it into a 2D numpy array of brightnesses. |
|
If parts of the text don't match the format they will be skipped. |
|
''' |
|
lines = text.split('\n') |
|
pixels = np.zeros((IMG_SIZE[1], IMG_SIZE[0] - 2)) |
|
|
|
tokens = None |
|
for y, line in enumerate(lines): |
|
tokens = line.split(' ') |
|
for i in range(2, min(IMG_SIZE[0], len(tokens))): |
|
token = tokens[i] |
|
if len(token) == 1: |
|
tkn_v = (ord(token) - 33) |
|
if tkn_v >= 0 and tkn_v <= 64: |
|
pixels[y, i - 2] = (ord(token) - 33) / 64 |
|
|
|
if not lines: |
|
return pixels |
|
|
|
if tokens and len(tokens) > 1 and tokens[1] == 'up': |
|
pixels = pixels[::-1] |
|
|
|
return pixels |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=datasets.Features( |
|
{ |
|
'label': datasets.features.ClassLabel(names=LABELS), |
|
'text': datasets.Value("string"), |
|
} |
|
), |
|
homepage="https://github.com/Fraser-Greenlee/my-huggingface-datasets", |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
train_path = dl_manager.download_and_extract(_TRAIN_DOWNLOAD_URL) |
|
test_path = dl_manager.download_and_extract(_TEST_DOWNLOAD_URL) |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={"filepath": os.path.join(train_path, 'train.json')} |
|
), |
|
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": test_path}), |
|
] |
|
|
|
def _generate_examples(self, filepath): |
|
"""Generate examples.""" |
|
with open(filepath, encoding="utf-8") as json_lines_file: |
|
data = [] |
|
for line in json_lines_file: |
|
data.append(json.loads(line)) |
|
|
|
for id_, row in enumerate(data): |
|
yield id_, row |
|
|