{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "{user.username}\n" ] } ], "source": [ "from transformers import AutoTokenizer, AutoModelForSeq2SeqLM\n", "\n", "tokenizer = AutoTokenizer.from_pretrained(\"Salesforce/codet5-base\")\n", "model = AutoModelForSeq2SeqLM.from_pretrained(\"Salesforce/codet5-base\")\n", "\n", "text = \"def greet(user): print(f'hello !')\"\n", "input_ids = tokenizer(text, return_tensors=\"pt\").input_ids\n", "\n", "# simply generate a single sequence\n", "generated_ids = model.generate(input_ids, max_length=8)\n", "print(tokenizer.decode(generated_ids[0], skip_special_tokens=True))\n", "# this prints \"{user.username}\"" ] }, { "cell_type": "code", "execution_count": 18, "metadata": {}, "outputs": [], "source": [ "import ast\n", "\n", "def filter_codes(codes):\n", " codes = list(set(codes))\n", " new_codes = []\n", " for code in codes:\n", " if ';' in code:\n", " code = code[code.index(';'):]\n", " try:\n", " ast.parse(code)\n", " except Exception:\n", " continue\n", " new_codes.append(code)\n", " return new_codes" ] }, { "cell_type": "code", "execution_count": 19, "metadata": {}, "outputs": [], "source": [ "def temp_value(value):\n", " if value[0] == '[' and value[-1] == ']':\n", " return '[]'\n", " if value[0] == '\"' and value[-1] == '\"':\n", " return '\"\"'\n", " if value[0] == \"'\" and value[-1] == \"'\":\n", " return \"''\"\n", " if value[0] == '{' and value[-1] == '}':\n", " return '{}'\n", " return ''\n", "\n", "def temp_var(var):\n", " value = var[4:]\n", " return var[:4] + temp_value(value)" ] }, { "cell_type": "code", "execution_count": 20, "metadata": {}, "outputs": [], "source": [ "def make_code(start, code):\n", " return f'def main(): {\"; \".join(start)}; {code}; return {\", \".join([v.split()[0] for v in start])}'" ] }, { "cell_type": "code", "execution_count": 21, "metadata": {}, "outputs": [], "source": [ "import ast\n", "\n", "def filter_codes(codes):\n", " codes = list(set(codes))\n", " new_codes = []\n", " for code in codes:\n", " if ';' in code:\n", " code = code[code.index(';'):]\n", " try:\n", " ast.parse(code)\n", " except Exception:\n", " continue\n", " new_codes.append(code)\n", " return new_codes" ] }, { "cell_type": "code", "execution_count": 22, "metadata": {}, "outputs": [], "source": [ "def alt_from_code(code):\n", " input_ids = tokenizer(code, return_tensors=\"pt\").input_ids\n", " generated_ids = model.generate(input_ids, num_return_sequences=100, max_length=20, do_sample=True, temperature=1.0)\n", " return filter_codes(tokenizer.batch_decode(generated_ids, skip_special_tokens=True))" ] }, { "cell_type": "code", "execution_count": 23, "metadata": {}, "outputs": [], "source": [ "import errno\n", "import os\n", "import signal\n", "import functools\n", "\n", "class TimeoutError(Exception):\n", " pass\n", "\n", "def timeout(seconds=10, error_message=os.strerror(errno.ETIME)):\n", " def decorator(func):\n", " def _handle_timeout(signum, frame):\n", " raise TimeoutError(error_message)\n", "\n", " @functools.wraps(func)\n", " def wrapper(*args, **kwargs):\n", " signal.signal(signal.SIGALRM, _handle_timeout)\n", " signal.alarm(seconds)\n", " try:\n", " result = func(*args, **kwargs)\n", " finally:\n", " signal.alarm(0)\n", " return result\n", "\n", " return wrapper\n", "\n", " return decorator" ] }, { "cell_type": "code", "execution_count": 37, "metadata": {}, "outputs": [], "source": [ "def state_dict_to_str(state):\n", " vals = []\n", " for k, v in state.items():\n", " vals.append(\n", " f'{k} = {v}'\n", " )\n", " vals = sorted(vals)\n", " return '; '.join(vals)" ] }, { "cell_type": "code", "execution_count": 38, "metadata": {}, "outputs": [], "source": [ "def trace_code(start_state: str, code: str):\n", " state = {}\n", " try:\n", " exec(start_state, {}, state)\n", " except Exception:\n", " return\n", " start_state = dict(state)\n", " try:\n", " exec(code, {}, state)\n", " except Exception:\n", " return\n", " return state_dict_to_str(start_state), code, state_dict_to_str(state)" ] }, { "cell_type": "code", "execution_count": 39, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "[{'start': 'g = 100; i = 1; l = [1, 100, 1]',\n", " 'code': 'g += l[i]',\n", " 'end': 'g = 200; i = 1; l = [1, 100, 1]'},\n", " {'start': 'g = 100; i = 1; l = [1, 1]',\n", " 'code': 'g += l[i]',\n", " 'end': 'g = 101; i = 1; l = [1, 1]'},\n", " {'start': 'g = 100; i = 1; l = [1, 1, 1]',\n", " 'code': 'g += l[i]',\n", " 'end': 'g = 101; i = 1; l = [1, 1, 1]'},\n", " {'start': 'g = 100; i = 1; l = [100, 100]',\n", " 'code': 'g += l[i]',\n", " 'end': 'g = 200; i = 1; l = [100, 100]'},\n", " {'start': 'g = 100; i = 1; l = [50, 50, 50, 40]',\n", " 'code': 'g += l[i]',\n", " 'end': 'g = 150; i = 1; l = [50, 50, 50, 40]'},\n", " {'start': 'g = 100; i = 1; l = [0, 10]',\n", " 'code': 'g += l[i]',\n", " 'end': 'g = 110; i = 1; l = [0, 10]'},\n", " {'start': 'g = 100; i = 1; l = [100, 900, 10, 10]',\n", " 'code': 'g += l[i]',\n", " 'end': 'g = 1000; i = 1; l = [100, 900, 10, 10]'},\n", " {'start': 'g = 100; i = 1; l = [1, 1, 2]',\n", " 'code': 'g += l[i]',\n", " 'end': 'g = 101; i = 1; l = [1, 1, 2]'},\n", " {'start': 'g = 100; i = 1; l = [100, 100, 100, 0, 0]',\n", " 'code': 'g += l[i]',\n", " 'end': 'g = 200; i = 1; l = [100, 100, 100, 0, 0]'}]" ] }, "execution_count": 39, "metadata": {}, "output_type": "execute_result" } ], "source": [ "def get_working_alts(other_vars, var_alts, code):\n", " rows = []\n", " for alt in var_alts:\n", " start = other_vars + [alt]\n", " result = trace_code('; '.join(start), code)\n", " if result:\n", " rows.append({'start': result[0], 'code': result[1], 'end': result[2]})\n", " return rows\n", "\n", "test_alt_vars = [\n", " 'l = [1, 100, 1]',\n", " 'l = [1, 1]',\n", " 'l = [f]',\n", " 'l = [1, 1, 1,]',\n", " 'l = [i = 10]',\n", " 'l = [100, 100]',\n", " 'l = [l[i].max(), l[i].min()]',\n", " 'l = [1]',\n", " 'l = [50, 50, 50, 40]',\n", " 'l = [0, 10]',\n", " 'l = [100, 900, 10, 10]',\n", " 'l = [i, 1, 2]',\n", " 'l = [100, 100, 100, 0, 0]'\n", "]\n", "get_working_alts(['g = 100', 'i = 1'], test_alt_vars, 'g += l[i]')" ] }, { "cell_type": "code", "execution_count": 46, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "(['g = 100', 'i = 1'],\n", " ['l = [1, 2]',\n", " 'l = [0,1,2,3,3,4,5,6,9]',\n", " 'l = [0.01]',\n", " 'l = [5, 6, 8, 12,]',\n", " 'l = [g * 2, 1]',\n", " 'l = [g / 100.0 + i]',\n", " 'l = [100, 100,]',\n", " 'l = [0, 1]',\n", " 'l = [1]',\n", " 'l = [15, 100, 1000100, i,]',\n", " 'l = [100, 1, 0]',\n", " 'l = [i, m]',\n", " 'l = [.1,.2]',\n", " 'l = [100100]',\n", " 'l = [100, 100,100]',\n", " 'l = [1, 2, 3, 4]',\n", " 'l = [0.001, 0.001, 0.001, 1.001]',\n", " 'l = [100, 100, 100]',\n", " 'l = [0.9]',\n", " 'l = [1, 2, 3]',\n", " 'l = [g / i]',\n", " 'l = [g]',\n", " 'l = [i - 1]',\n", " 'l = [1, 1, 1]',\n", " 'l = [10, 20]',\n", " 'l = [0, 2, 3]',\n", " 'l = [100]',\n", " 'l = [1, 1, 2]',\n", " 'l = [10109090909090909090909090909090909]',\n", " 'l = [g, i]',\n", " 'l = [1, 2,2]',\n", " 'l = [0, 0]',\n", " 'l = [10, 20, 20]',\n", " 'l = [i]',\n", " 'l = [g, 1]',\n", " 'l = [0, 1, 0]',\n", " 'l = [100, 90]',\n", " 'l = [10, 5, 6]',\n", " 'l = [g, g-i, l]',\n", " 'l = [0]',\n", " 'l = [1,2,3,2,7,5,6,8,9]',\n", " 'l = [floa_e_b, floa_e_c, f]',\n", " 'l = [100, 100, 1]',\n", " 'l = [0.5, 1.5]',\n", " 'l = [100, 1001, 1001, 1012, 1015]'])" ] }, "execution_count": 46, "metadata": {}, "output_type": "execute_result" } ], "source": [ "def get_alts_for_var(start_vars, alt_i, code):\n", " start_vars[alt_i] = temp_var(start_vars[alt_i])\n", " code = make_code(start_vars, row['code'])\n", " var_alts = alt_from_code(code)\n", " alt_var_temp = start_vars[alt_i]\n", " del start_vars[alt_i]\n", " return start_vars, [alt_var_temp.replace('', alt) for alt in var_alts]\n", "\n", "alt_start_vars, var_alts = get_alts_for_var(\n", " ['g = 100', 'i = 1', 'l = [100, 100, 0, 0, -100, -100]'], 2, 'g += l[i]'\n", ")\n", "alt_start_vars, var_alts" ] }, { "cell_type": "code", "execution_count": 50, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "(53,\n", " [{'start': 'g = 1; i = 1; l = [100, 100, 0, 0, -100, -100]',\n", " 'code': 'g += l[i]',\n", " 'end': 'g = 101; i = 1; l = [100, 100, 0, 0, -100, -100]'},\n", " {'start': 'g = 2; i = 1; l = [100, 100, 0, 0, -100, -100]',\n", " 'code': 'g += l[i]',\n", " 'end': 'g = 102; i = 1; l = [100, 100, 0, 0, -100, -100]'},\n", " {'start': 'g = 3; i = 1; l = [100, 100, 0, 0, -100, -100]',\n", " 'code': 'g += l[i]',\n", " 'end': 'g = 103; i = 1; l = [100, 100, 0, 0, -100, -100]'}])" ] }, "execution_count": 50, "metadata": {}, "output_type": "execute_result" } ], "source": [ "def make_alternatives(row):\n", " start_vars = row['start'].split('; ')\n", "\n", " alts = []\n", " for i in range(len(start_vars)):\n", " alt_start_vars, var_alts = get_alts_for_var(list(start_vars), i, row['code'])\n", " alts += get_working_alts(alt_start_vars, var_alts, row['code'])\n", "\n", " return alts\n", "\n", "alts = make_alternatives(\n", " {'start': 'g = 100; i = 1; l = [100, 100, 0, 0, -100, -100]',\n", " 'code': 'g += l[i]',\n", " 'end': 'g = 200; i = 1; l = [100, 100, 0, 0, -100, -100]'}\n", ")\n", "len(alts), alts[:3]" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [], "source": [ "import json\n", "\n", "with open('../data.jsonl', 'r', encoding=\"utf-8\") as f:\n", " for id_, line in enumerate(f):\n", " row = json.loads(line)\n", " alts = make_alternatives(row)\n", " # TODO: save alts\n", " break" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "['1, 2',\n", " '1, 0',\n", " '1, 1, 1, 1',\n", " '1, 1',\n", " '\"ab\",i,2',\n", " '0, 1',\n", " '8',\n", " '\"s\", \"m\", \"v\", \"r \"',\n", " 'g, - p',\n", " '1, 1, 1,',\n", " '7, 5, 6',\n", " 'g, i, l',\n", " '1',\n", " '1,1,2,3',\n", " '1, 2, 2',\n", " '\"ab\", \"aa\", \"ab\", \"aa\"',\n", " '1, 2, 3, 4',\n", " '\"ab\",\"ace\",\"ae\",\"ad\"',\n", " 'i, i',\n", " '\"ab\", \"a\", \"e\"',\n", " '100, 100, 100',\n", " '1,3,3,4,5,6,7,9,0',\n", " '\" a\"',\n", " '0, 1, 2',\n", " '0, 1, 1, 1, 0',\n", " '\"ab\", \"bal,ca\"',\n", " 'g,i, l [ i ]',\n", " '1, 3,4, 6',\n", " 'a',\n", " '1, 2, 3',\n", " '9, 9',\n", " '( 1)',\n", " '2, - 1, - 1',\n", " '0 | 1 | 0|0',\n", " '{ 1 }',\n", " 'i - 1',\n", " 'o, l1, o2, l',\n", " '\"ab\"',\n", " '1, 1, 2',\n", " 'g, i',\n", " '0, 0',\n", " '\"a\"',\n", " 'i, l',\n", " 'i',\n", " '0,0',\n", " '- l [ i ]',\n", " '1, 2, 3, 1',\n", " 'l[ i - 1 ]',\n", " '\"1\",\"2\", \"3\",\"4\", \"5\"',\n", " 'g, g, i']" ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "code ='def main(): g = \"ab\"; i = 1; l = []; g += l[i]; return g, i, l'\n", "\n", "input_ids = tokenizer(code, return_tensors=\"pt\").input_ids\n", "generated_ids = model.generate(input_ids, num_return_sequences=100, max_length=20, do_sample=True, temperature=1.0)\n", "filter_codes(tokenizer.batch_decode(generated_ids, skip_special_tokens=True))\n", "\n", "# 100 samples -> ~8 valid alternatives, 3.1s on macos CPU" ] }, { "cell_type": "code", "execution_count": 54, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "['5g i l [ 0',\n", " '00, 0, 0',\n", " '01 1 2, 1',\n", " \"'i\",\n", " '0a t',\n", " '0.0e. f_i',\n", " '\" \"1',\n", " '0n = 1 l =',\n", " '0, 0, 11',\n", " '1k y y x z']" ] }, "execution_count": 54, "metadata": {}, "output_type": "execute_result" } ], "source": [ "code ='def main(): g = ; i = 1; l = []; g += l[i]; return g, i, l'\n", "\n", "input_ids = tokenizer(code, return_tensors=\"pt\").input_ids\n", "generated_ids = model.generate(input_ids, num_return_sequences=10, max_length=20, do_sample=True, temperature=1.0)\n", "tokenizer.batch_decode(generated_ids)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "interpreter": { "hash": "ced6a873299cbeeefe969ab88294103b352f8c83b6537b9e08e8739795321d60" }, "kernelspec": { "display_name": "Python 3.9.9 64-bit ('3.9.9': pyenv)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.9.9" }, "orig_nbformat": 4 }, "nbformat": 4, "nbformat_minor": 2 }