|
import pandas as pd |
|
import matplotlib.pyplot as plt |
|
import seaborn as sns |
|
import numpy as np |
|
|
|
|
|
df = pd.concat([pd.read_csv('phishing_features_train.csv'), pd.read_csv('phishing_features_val.csv')], ignore_index=True) |
|
|
|
|
|
columns_to_plot = ['redirects', 'not_indexed_by_google', 'issuer', 'certificate_age', 'email_submission', 'request_url_percentage', 'url_anchor_percentage', 'meta_percentage', 'script_percentage', 'link_percentage', 'mouseover_changes', 'right_click_disabled', 'popup_window_has_text_field', 'use_iframe', 'has_suspicious_port', 'external_favicons', 'TTL', 'ip_address_count', 'TXT_record', 'check_sfh', 'count_domain_occurrences', 'domain_registeration_length', 'abnormal_url', 'age_of_domain', 'page_rank_decimal'] |
|
|
|
|
|
file_names = [] |
|
|
|
|
|
for column in columns_to_plot: |
|
if df[column].dtype == 'int64' or df[column].dtype == 'float64': |
|
fig, ax = plt.subplots() |
|
sns.regplot(x=column, y='is_malicious', data=df, ax=ax) |
|
corr_coef = df[[column, 'is_malicious']].corr().iloc[0,1] |
|
ax.set_title(f'{column} vs is_malicious\nCorrelation Coefficient: {corr_coef:.2f}') |
|
file_name = f'{column}_scatterplot.png' |
|
plt.savefig(file_name) |
|
file_names.append(file_name) |
|
elif df[column].dtype == 'object': |
|
fig, ax = plt.subplots() |
|
if (df[column] == "None").sum() > 0: |
|
sns.countplot(x=column, hue='is_malicious', data=df[df[column] == "None"], ax=ax) |
|
ax.set_title(f'{column} (null) vs is_malicious') |
|
file_name = f'{column}_null_barplot.png' |
|
plt.savefig(file_name) |
|
file_names.append(file_name) |
|
sns.countplot(x=column, hue='is_malicious', data=df, ax=ax) |
|
ax.set_title(f'{column} (all) vs is_malicious') |
|
file_name = f'{column}_all_barplot.png' |
|
plt.savefig(file_name) |
|
file_names.append(file_name) |
|
|
|
|
|
num_plots = len(file_names) |
|
num_rows = int(np.ceil(num_plots/2)) |
|
fig, axs = plt.subplots(num_rows, 2, figsize=(20, 5*num_rows)) |
|
for i, file_name in enumerate(file_names): |
|
row = i // 2 |
|
col = i % 2 |
|
img = plt.imread(file_name) |
|
axs[row, col].imshow(img) |
|
axs[row, col].axis('off') |
|
if num_plots % 2 == 1: |
|
axs[num_rows-1, 1].axis('off') |
|
plt.tight_layout() |
|
plt.savefig('correlation_coefficient.png') |
|
|