Datasets:
GEM
/

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 4,954 Bytes
63abb80
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9c32110
 
63abb80
 
 
 
 
9c32110
63abb80
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9c32110
 
 
 
 
 
 
 
 
 
 
 
 
 
 
63abb80
 
 
 
 
 
 
 
 
9c32110
63abb80
9c32110
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
import csv
import json
import os
import datasets

_CITATION = """\
@inproceedings{e2e_cleaned,
	address = {Tokyo, Japan},
	title = {Semantic {Noise} {Matters} for {Neural} {Natural} {Language} {Generation}},
	url = {https://www.aclweb.org/anthology/W19-8652/},
	booktitle = {Proceedings of the 12th {International} {Conference} on {Natural} {Language} {Generation} ({INLG} 2019)},
	author = {Dušek, Ondřej and Howcroft, David M and Rieser, Verena},
	year = {2019},
	pages = {421--426},
}
"""

_DESCRIPTION = """\
The E2E dataset is designed for a limited-domain data-to-text task --
generation of restaurant descriptions/recommendations based on up to 8 different
attributes (name, area, price range etc.).
"""

_URLs = {
    "train": "https://github.com/tuetschek/e2e-cleaning/raw/master/cleaned-data/train-fixed.no-ol.csv",
    "validation": "https://raw.githubusercontent.com/jordiclive/GEM_datasets/main/e2e/validation.json",
    "test": "https://raw.githubusercontent.com/jordiclive/GEM_datasets/main/e2e/test.json",
    "challenge_set": "https://storage.googleapis.com/huggingface-nlp/datasets/gem/gem_challenge_sets/e2e_nlg.zip",
}


class E2ENlg(datasets.GeneratorBasedBuilder):
    VERSION = datasets.Version("1.0.1")
    DEFAULT_CONFIG_NAME = "e2e_nlg"

    def _info(self):
        features = datasets.Features(
            {
                "gem_id": datasets.Value("string"),
                "gem_parent_id": datasets.Value("string"),
                "meaning_representation": datasets.Value("string"),
                "target": datasets.Value("string"),
                "references": [datasets.Value("string")],
            }
        )
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=features,
            supervised_keys=datasets.info.SupervisedKeysData(
                input="meaning_representation", output="target"
            ),
            homepage="http://www.macs.hw.ac.uk/InteractionLab/E2E/",
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        """Returns SplitGenerators."""
        dl_dir = dl_manager.download_and_extract(_URLs)
        challenge_sets = [
            ("challenge_train_sample", "train_e2e_nlg_RandomSample500.json"),
            ("challenge_validation_sample", "validation_e2e_nlg_RandomSample500.json"),
            ("challenge_test_scramble", "test_e2e_nlg_ScrambleInputStructure500.json"),
        ]
        return [
            datasets.SplitGenerator(
                name=spl, gen_kwargs={"filepath": dl_dir[spl], "split": spl}
            )
            for spl in ["train", "validation", "test"]
        ] + [
            datasets.SplitGenerator(
                name=challenge_split,
                gen_kwargs={
                    "filepath": os.path.join(
                        dl_dir["challenge_set"], "e2e_nlg", filename
                    ),
                    "split": challenge_split,
                },
            )
            for challenge_split, filename in challenge_sets
        ]

    def _generate_examples(self, filepath, split, filepaths=None, lang=None):
        """Yields examples."""
        if split.startswith("challenge"):
            exples = json.load(open(filepath, encoding="utf-8"))
            if isinstance(exples, dict):
                assert len(exples) == 1, "multiple entries found"
                exples = list(exples.values())[0]
            for id_, exple in enumerate(exples):
                if len(exple) == 0:
                    continue
                exple["gem_parent_id"] = exple["gem_id"]
                exple["gem_id"] = f"e2e_nlg-{split}-{id_}"
                yield id_, exple
        if split.startswith("test") or split.startswith("validation"):
            exples = json.load(open(filepath, encoding="utf-8"))
            if isinstance(exples, dict):
                assert len(exples) == 1, "multiple entries found"
                exples = list(exples.values())[0]
            for id_, exple in enumerate(exples):
                if len(exple) == 0:
                    continue
                yield id_, {
                    "gem_id": f"e2e_nlg-{split}-{id_}",
                    "gem_parent_id": f"e2e_nlg-{split}-{id_}",
                    "meaning_representation": exple["meaning_representation"],
                    "target": exple["references"][0],
                    "references": exple["references"],
                }
        else:
            with open(filepath, encoding="utf-8") as f:
                reader = csv.DictReader(f)
                for id_, example in enumerate(reader):
                    yield id_, {
                        "gem_id": f"e2e_nlg-{split}-{id_}",
                        "gem_parent_id": f"e2e_nlg-{split}-{id_}",
                        "meaning_representation": example["mr"],
                        "target": example["ref"],
                        "references": []
                    }