Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 6,583 Bytes
57df3ab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
# coding=utf-8
# Copyright 2020 HuggingFace Datasets Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# Lint as: python3
"""Introduction to the CoNLL-2003 Shared Task: Language-Independent Named Entity Recognition"""

import os

import datasets


logger = datasets.logging.get_logger(__name__)


_CITATION = """\
@inproceedings{derczynski2016broad,
  title={Broad twitter corpus: A diverse named entity recognition resource},
  author={Derczynski, Leon and Bontcheva, Kalina and Roberts, Ian},
  booktitle={Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers},
  pages={1169--1179},
  year={2016}
}
"""

_DESCRIPTION = """\
This is the Broad Twitter corpus, a dataset of tweets collected over stratified times, places and social uses. 
The goal is to represent a broad range of activities, giving a dataset more representative of the language used 
in this hardest of social media formats to process. Further, the BTC is annotated for named entities.

For more details see [https://aclanthology.org/C16-1111/](https://aclanthology.org/C16-1111/)
"""

_URL = "https://github.com/GateNLP/broad_twitter_corpus/archive/refs/heads/master.zip"
_subpath = "broad_twitter_corpus-master/"
_A_FILE = _subpath + "a.conll"
_B_FILE = _subpath + "b.conll"
_E_FILE = _subpath + "e.conll"
_F_FILE = _subpath + "f.conll"
_G_FILE = _subpath + "g.conll"
_H_FILE = _subpath + "h.conll"

# _TRAINING_FILE = "train.txt"
_DEV_FILE = _H_FILE
_TEST_FILE = _F_FILE


class BroadTwitterCorpusConfig(datasets.BuilderConfig):
    """BuilderConfig for BroadTwitterCorpus"""

    def __init__(self, **kwargs):
        """BuilderConfig for BroadTwitterCorpus.

        Args:
          **kwargs: keyword arguments forwarded to super.
        """
        super(BroadTwitterCorpusConfig, self).__init__(**kwargs)


class BroadTwitterCorpus(datasets.GeneratorBasedBuilder):
    """BroadTwitterCorpus dataset."""

    BUILDER_CONFIGS = [
        BroadTwitterCorpusConfig(name="broad-twitter-corpus", version=datasets.Version("1.0.0"), description="Broad Twitter Corpus"),
    ]

    def _info(self):
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=datasets.Features(
                {
                    "id": datasets.Value("string"),
                    "tokens": datasets.Sequence(datasets.Value("string")),
                    "ner_tags": datasets.Sequence(
                        datasets.features.ClassLabel(
                            names=[
                                "O",
                                "B-PER",
                                "I-PER",
                                "B-ORG",
                                "I-ORG",
                                "B-LOC",
                                "I-LOC",
                            ]
                        )
                    ),
                }
            ),
            supervised_keys=None,
            homepage="https://aclanthology.org/C16-1111/",
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        """Returns SplitGenerators."""
        downloaded_file = dl_manager.download_and_extract(_URL)

        data_files = {
            "a": os.path.join(downloaded_file, _A_FILE),
            "b": os.path.join(downloaded_file, _B_FILE),
            "e": os.path.join(downloaded_file, _E_FILE),
            "f": os.path.join(downloaded_file, _F_FILE),
            "g": os.path.join(downloaded_file, _G_FILE),
            "h": os.path.join(downloaded_file, _H_FILE),
            "dev": os.path.join(downloaded_file, _DEV_FILE),
            "test": os.path.join(downloaded_file, _TEST_FILE),
        }

        """
        btc_section_a = datasets.SplitGenerator(name="BTC_A", gen_kwargs={"filepath": data_files["a"]})
        btc_section_b = datasets.SplitGenerator(name="BTC_B", gen_kwargs={"filepath": data_files["b"]})
        btc_section_e = datasets.SplitGenerator(name="BTC_E", gen_kwargs={"filepath": data_files["e"]})
        btc_section_f = datasets.SplitGenerator(name="BTC_F", gen_kwargs={"filepath": data_files["f"]})
        btc_section_g = datasets.SplitGenerator(name="BTC_G", gen_kwargs={"filepath": data_files["g"]})
        btc_section_h = datasets.SplitGenerator(name="BTC_H", gen_kwargs={"filepath": data_files["h"]})
        """
        return [
            datasets.SplitGenerator(name=datasets.Split.TRAIN,
                gen_kwargs={"filepaths": [data_files['a'], data_files['b'], data_files['e'], data_files['g']]}
                ),
            datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepaths": [data_files["dev"]]}),
            datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepaths": [data_files["test"]]}),
        ]

    def _generate_examples(self, filepaths):
        guid = 0
        for filepath in filepaths:
            with open(filepath, encoding="utf-8") as f:
                logger.info("⏳ Generating examples from = %s", filepath)
                tokens = []
                ner_tags = []
                for line in f:
                    if line.startswith("-DOCSTART-") or line.strip() == "" or line == "\n":
                        if tokens:
                            yield guid, {
                                "id": str(guid),
                                "tokens": tokens,
                                "ner_tags": ner_tags,
                            }
                            guid += 1
                            tokens = []
                            ner_tags = []
                    else:
                        # btc entries are tab separated
                        fields = line.split("\t")
                        tokens.append(fields[0])
                        ner_tags.append(fields[1].rstrip())
                # last example
                yield guid, {
                    "id": str(guid),
                    "tokens": tokens,
                    "ner_tags": ner_tags,
                }
                guid += 1 # for when files roll over