Datasets:
Tasks:
Token Classification
Modalities:
Text
Sub-tasks:
named-entity-recognition
Languages:
English
Size:
1K - 10K
License:
# coding=utf-8 | |
# Copyright 2020 HuggingFace Datasets Authors. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# Lint as: python3 | |
"""Introduction to the CoNLL-2003 Shared Task: Language-Independent Named Entity Recognition""" | |
import os | |
import datasets | |
logger = datasets.logging.get_logger(__name__) | |
_CITATION = """\ | |
@inproceedings{derczynski2016broad, | |
title={Broad twitter corpus: A diverse named entity recognition resource}, | |
author={Derczynski, Leon and Bontcheva, Kalina and Roberts, Ian}, | |
booktitle={Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers}, | |
pages={1169--1179}, | |
year={2016} | |
} | |
""" | |
_DESCRIPTION = """\ | |
This is the Broad Twitter corpus, a dataset of tweets collected over stratified times, places and social uses. | |
The goal is to represent a broad range of activities, giving a dataset more representative of the language used | |
in this hardest of social media formats to process. Further, the BTC is annotated for named entities. | |
For more details see [https://aclanthology.org/C16-1111/](https://aclanthology.org/C16-1111/) | |
""" | |
_URL = "https://github.com/GateNLP/broad_twitter_corpus/archive/refs/heads/master.zip" | |
_subpath = "broad_twitter_corpus-master/" | |
_A_FILE = _subpath + "a.conll" | |
_B_FILE = _subpath + "b.conll" | |
_E_FILE = _subpath + "e.conll" | |
_F_FILE = _subpath + "f.conll" | |
_G_FILE = _subpath + "g.conll" | |
_H_FILE = _subpath + "h.conll" | |
# _TRAINING_FILE = "train.txt" | |
_DEV_FILE = _H_FILE | |
_TEST_FILE = _F_FILE | |
class BroadTwitterCorpusConfig(datasets.BuilderConfig): | |
"""BuilderConfig for BroadTwitterCorpus""" | |
def __init__(self, **kwargs): | |
"""BuilderConfig for BroadTwitterCorpus. | |
Args: | |
**kwargs: keyword arguments forwarded to super. | |
""" | |
super(BroadTwitterCorpusConfig, self).__init__(**kwargs) | |
class BroadTwitterCorpus(datasets.GeneratorBasedBuilder): | |
"""BroadTwitterCorpus dataset.""" | |
BUILDER_CONFIGS = [ | |
BroadTwitterCorpusConfig(name="broad-twitter-corpus", version=datasets.Version("1.0.0"), description="Broad Twitter Corpus"), | |
] | |
def _info(self): | |
return datasets.DatasetInfo( | |
description=_DESCRIPTION, | |
features=datasets.Features( | |
{ | |
"id": datasets.Value("string"), | |
"tokens": datasets.Sequence(datasets.Value("string")), | |
"ner_tags": datasets.Sequence( | |
datasets.features.ClassLabel( | |
names=[ | |
"O", | |
"B-PER", | |
"I-PER", | |
"B-ORG", | |
"I-ORG", | |
"B-LOC", | |
"I-LOC", | |
] | |
) | |
), | |
} | |
), | |
supervised_keys=None, | |
homepage="https://aclanthology.org/C16-1111/", | |
citation=_CITATION, | |
) | |
def _split_generators(self, dl_manager): | |
"""Returns SplitGenerators.""" | |
downloaded_file = dl_manager.download_and_extract(_URL) | |
data_files = { | |
"a": os.path.join(downloaded_file, _A_FILE), | |
"b": os.path.join(downloaded_file, _B_FILE), | |
"e": os.path.join(downloaded_file, _E_FILE), | |
"f": os.path.join(downloaded_file, _F_FILE), | |
"g": os.path.join(downloaded_file, _G_FILE), | |
"h": os.path.join(downloaded_file, _H_FILE), | |
"dev": os.path.join(downloaded_file, _DEV_FILE), | |
"test": os.path.join(downloaded_file, _TEST_FILE), | |
} | |
""" | |
btc_section_a = datasets.SplitGenerator(name="BTC_A", gen_kwargs={"filepath": data_files["a"]}) | |
btc_section_b = datasets.SplitGenerator(name="BTC_B", gen_kwargs={"filepath": data_files["b"]}) | |
btc_section_e = datasets.SplitGenerator(name="BTC_E", gen_kwargs={"filepath": data_files["e"]}) | |
btc_section_f = datasets.SplitGenerator(name="BTC_F", gen_kwargs={"filepath": data_files["f"]}) | |
btc_section_g = datasets.SplitGenerator(name="BTC_G", gen_kwargs={"filepath": data_files["g"]}) | |
btc_section_h = datasets.SplitGenerator(name="BTC_H", gen_kwargs={"filepath": data_files["h"]}) | |
""" | |
return [ | |
datasets.SplitGenerator(name=datasets.Split.TRAIN, | |
gen_kwargs={"filepaths": [data_files['a'], data_files['b'], data_files['e'], data_files['g']]} | |
), | |
datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepaths": [data_files["dev"]]}), | |
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepaths": [data_files["test"]]}), | |
] | |
def _generate_examples(self, filepaths): | |
guid = 0 | |
for filepath in filepaths: | |
with open(filepath, encoding="utf-8") as f: | |
logger.info("⏳ Generating examples from = %s", filepath) | |
tokens = [] | |
ner_tags = [] | |
for line in f: | |
if line.startswith("-DOCSTART-") or line.strip() == "" or line == "\n": | |
if tokens: | |
yield guid, { | |
"id": str(guid), | |
"tokens": tokens, | |
"ner_tags": ner_tags, | |
} | |
guid += 1 | |
tokens = [] | |
ner_tags = [] | |
else: | |
# btc entries are tab separated | |
fields = line.split("\t") | |
tokens.append(fields[0]) | |
ner_tags.append(fields[1].rstrip()) | |
# last example | |
yield guid, { | |
"id": str(guid), | |
"tokens": tokens, | |
"ner_tags": ner_tags, | |
} | |
guid += 1 # for when files roll over | |