Datasets:

Languages:
English
ArXiv:
License:
admin commited on
Commit
684e1c4
1 Parent(s): 6156263

rename org name

Browse files
Files changed (2) hide show
  1. HEp2.py +1 -3
  2. README.md +5 -11
HEp2.py CHANGED
@@ -4,9 +4,7 @@ import datasets
4
  from datasets.tasks import ImageClassification
5
 
6
 
7
- _HOMEPAGE = (
8
- f"https://www.modelscope.cn/datasets/MuGemSt/{os.path.basename(__file__)[:-3]}"
9
- )
10
 
11
  _URL = f"{_HOMEPAGE}/resolve/master/images.zip"
12
 
 
4
  from datasets.tasks import ImageClassification
5
 
6
 
7
+ _HOMEPAGE = f"https://www.modelscope.cn/datasets/Genius-Society/{os.path.basename(__file__)[:-3]}"
 
 
8
 
9
  _URL = f"{_HOMEPAGE}/resolve/master/images.zip"
10
 
README.md CHANGED
@@ -13,17 +13,17 @@ size_categories:
13
  viewer: false
14
  ---
15
 
16
- # Dataset card for "MuGemSt/HEp2"
17
  The HEp-2 (Human Epithelial type 2) dataset is a widely used benchmark in the field of medical image analysis, especially for the task of antinuclear antibody (ANA) pattern classification. The dataset contains microscopic images of HEp-2 cells stained with fluorescence, demonstrating multiple patterns of autoantibody binding associated with various autoimmune diseases. The HEp-2 dataset is utilized by researchers and practitioners to develop and evaluate algorithms for automated ANA pattern recognition to aid in the diagnosis of autoimmune diseases. The intricate patterns in this dataset test the robustness of computational models, making it a valuable resource for advancing the understanding of autoimmune diseases and the development of advanced medical image analysis techniques.
18
 
19
  ## Viewer
20
- <https://www.modelscope.cn/datasets/MuGemSt/HEp2/dataPeview>
21
 
22
  ## Usage
23
  ```python
24
  from datasets import load_dataset
25
 
26
- data = load_dataset("MuGemSt/HEp2")
27
  trainset = data["train"]
28
  validset = data["validation"]
29
  testset = data["test"]
@@ -42,15 +42,9 @@ for item in testset:
42
  print("label name: " + labels[item["label"]])
43
  ```
44
 
45
- ## Maintenance
46
- ```bash
47
- git clone git@hf.co:datasets/MuGemSt/HEp2
48
- cd HEp2
49
- ```
50
-
51
  ## Mirror
52
- <https://www.modelscope.cn/datasets/MuGemSt/HEp2>
53
 
54
  ## Reference
55
- [1] [Chapter III ‐ Classifying Cell Images Using Deep Learning Models](https://github.com/MuGemSt/Medical_Image_Computing/wiki/Chapter-III-%E2%80%90-Classifying-Cell-Images-Using-Deep-Learning-Models)<br>
56
  [2] <a href="https://arxiv.org/pdf/1504.02531v1.pdf">HEp-2 Cell Image Classification with Deep Convolutional Neural Networks</a>
 
13
  viewer: false
14
  ---
15
 
16
+ # Dataset card for HEp2
17
  The HEp-2 (Human Epithelial type 2) dataset is a widely used benchmark in the field of medical image analysis, especially for the task of antinuclear antibody (ANA) pattern classification. The dataset contains microscopic images of HEp-2 cells stained with fluorescence, demonstrating multiple patterns of autoantibody binding associated with various autoimmune diseases. The HEp-2 dataset is utilized by researchers and practitioners to develop and evaluate algorithms for automated ANA pattern recognition to aid in the diagnosis of autoimmune diseases. The intricate patterns in this dataset test the robustness of computational models, making it a valuable resource for advancing the understanding of autoimmune diseases and the development of advanced medical image analysis techniques.
18
 
19
  ## Viewer
20
+ <https://www.modelscope.cn/datasets/Genius-Society/HEp2/dataPeview>
21
 
22
  ## Usage
23
  ```python
24
  from datasets import load_dataset
25
 
26
+ data = load_dataset("Genius-Society/HEp2")
27
  trainset = data["train"]
28
  validset = data["validation"]
29
  testset = data["test"]
 
42
  print("label name: " + labels[item["label"]])
43
  ```
44
 
 
 
 
 
 
 
45
  ## Mirror
46
+ <https://www.modelscope.cn/datasets/Genius-Society/HEp2>
47
 
48
  ## Reference
49
+ [1] [Chapter III ‐ Classifying Cell Images Using Deep Learning Models](https://github.com/Genius-Society/Medical_Image_Computing/wiki/Chapter-III-%E2%80%90-Classifying-Cell-Images-Using-Deep-Learning-Models)<br>
50
  [2] <a href="https://arxiv.org/pdf/1504.02531v1.pdf">HEp-2 Cell Image Classification with Deep Convolutional Neural Networks</a>