--- license: mit task_categories: - image-classification language: - en tags: - biology - medical pretty_name: HEp-2 Cell size_categories: - 10K ## Usage ```python from datasets import load_dataset data = load_dataset("Genius-Society/HEp2") trainset = data["train"] validset = data["validation"] testset = data["test"] labels = testset.features["label"].names for item in trainset: print("image: ", item["image"]) print("label name: " + labels[item["label"]]) for item in validset: print("image: ", item["image"]) print("label name: " + labels[item["label"]]) for item in testset: print("image: ", item["image"]) print("label name: " + labels[item["label"]]) ``` ## Mirror ## Reference [1] [Chapter III ‐ Classifying Cell Images Using Deep Learning Models](https://github.com/Genius-Society/Medical_Image_Computing/wiki/Chapter-III-%E2%80%90-Classifying-Cell-Images-Using-Deep-Learning-Models)
[2] HEp-2 Cell Image Classification with Deep Convolutional Neural Networks