Datasets:
File size: 12,812 Bytes
d948b6d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 |
from argparse import ArgumentParser
from typing import List, Dict
import numpy as np
import pytorch_lightning as pl
import sklearn.metrics
import sklearn.model_selection
import torch
import torch.optim
import torch.utils.data
import transformers
import pandas as pd
import random
import sklearn.metrics
try:
from polyglot.text import Text
except:
print("polyglot not installed. Cannot use --strategy_words")
class MyDataModule(pl.LightningDataModule):
def __init__(self, train_file, test_file, binary, tokenizer, max_length, batch_size, strategy_words_replacement_negate=False, strategy_words=None, random_masking_ratio=None):
super().__init__()
self.train_file = train_file
self.test_file = test_file
self.binary = binary
self.max_length = max_length
self.batch_size = batch_size
self.tokenizer = tokenizer
if strategy_words:
self.strategy_words = pd.read_csv(strategy_words)
self.strategy_words = set(list(self.strategy_words.values[:, 1:].reshape(-1)))
else:
self.strategy_words = None
self.strategy_words_replacement_negate = strategy_words_replacement_negate
self.random_masking_ratio = random_masking_ratio
@staticmethod
def read_file(file_name, text_only=False):
if file_name.split(".")[-1] == "csv":
df = pd.read_csv(file_name)
data = [(a, b) for a, b in zip(list(df['sentence']), df['score'])]
if text_only:
data = [t[0] for t in data]
else:
data = open(file_name).read().strip().split('\n')
return data
def setup(self, stage=None):
if self.train_file:
self.train_data = MyDataModule.read_file(self.train_file)
self.train_data, self.val_data = sklearn.model_selection.train_test_split(self.train_data, shuffle=False, test_size=0.2)
if self.test_file:
self.test_data = MyDataModule.read_file(self.test_file)
def prepare_dataloader(self, mode):
if mode == "train":
data = self.train_data
elif mode == "val":
data = self.val_data
else:
data = self.test_data
# tokenized = self.tokenizer([t[0] for t in data], padding="max_length", truncation=True, max_length=self.max_length, return_tensors="pt")
tokenized = MyDataModule.tokenize([t[0] for t in data], self.tokenizer, self.max_length, self.strategy_words_replacement_negate, self.strategy_words, self.random_masking_ratio)
if self.binary:
labels = torch.tensor([t[1] > 0 for t in data], dtype=int)
else:
labels = torch.tensor([t[1] for t in data])
if mode == "train":
weights = torch.zeros_like(labels)
weights[labels == 0] = labels.shape[0] - labels.sum()
weights[labels == 1] = labels.sum()
return torch.utils.data.DataLoader(torch.utils.data.TensorDataset(tokenized['input_ids'], tokenized['attention_mask'], labels), batch_size=self.batch_size, sampler=torch.utils.data.WeightedRandomSampler(1 / weights, len(weights), replacement=True))
else:
return torch.utils.data.DataLoader(torch.utils.data.TensorDataset(tokenized['input_ids'], tokenized['attention_mask'], labels), batch_size=self.batch_size)
@staticmethod
def tokenize(data: List[str], tokenizer, max_length, strategy_words_replacement_negate, strategy_words, random_masking_ratio):
if strategy_words is not None or random_masking_ratio is not None:
tokenized_data = []
for sentence in data:
words = Text(sentence).words
words = [t.lower() for t in words]
if strategy_words:
words = [t if ((t in strategy_words) != strategy_words_replacement_negate) else tokenizer.mask_token for t in words]
elif random_masking_ratio:
words = [t if random.random() <= random_masking_ratio else tokenizer.mask_token for t in words]
tokenized_data.append(' '.join(words))
out = tokenizer(tokenized_data, padding="max_length", truncation=True, max_length=max_length, return_tensors="pt")
# out['attention_mask'] = torch.tensor(out['input_ids'] != tokenizer.pad_token_id, dtype=int)
return out
else:
return tokenizer(data, padding="max_length", truncation=True, max_length=max_length, return_tensors="pt")
def train_dataloader(self):
return self.prepare_dataloader("train")
# return torch.utils.data.DataLoader(MyDataModule.CustomDataset1(self.tokenizer, self.train_data, self.max_length), batch_size=self.batch_size)
def test_dataloader(self):
return self.prepare_dataloader("test")
# return torch.utils.data.DataLoader(MyDataModule.CustomDataset1(self.tokenizer, self.test_data, self.max_length), batch_size=self.batch_size)
def val_dataloader(self):
return self.prepare_dataloader("val")
# return torch.utils.data.DataLoader(MyDataModule.CustomDataset1(self.tokenizer, self.val_data, self.max_length), batch_size=self.batch_size)
class RegressionModel(pl.LightningModule):
def __init__(self, pretrained_model, binary, learning_rate, num_warmup_steps, tokenizer):
super(RegressionModel, self).__init__()
self.save_hyperparameters()
self.pretrained_model = pretrained_model
self.binary = binary
self.learning_rate = learning_rate
self.num_warmup_steps = num_warmup_steps
self.tokenizer = tokenizer
self.model = transformers.AutoModelForSequenceClassification.from_pretrained(self.pretrained_model, num_labels=2 if self.binary else 1)
def forward(self, **kwargs):
return self.model(**kwargs)
def training_step(self, batch, batch_idx):
outputs = self.forward(input_ids=batch[0], attention_mask=batch[1], labels=batch[2])
loss = outputs['loss']
ret = {"loss": loss}
if self.binary:
acc = torch.tensor(batch[2] == torch.argmax(outputs['logits']), dtype=float).mean().item()
ret["acc"] = acc
else:
rmse = (torch.mean((batch[2] - outputs['logits'])**2)**0.5).item()
ret["rmse"] = rmse
return {"loss": loss, "log": ret}
def configure_optimizers(self):
optimizer = torch.optim.AdamW(self.parameters(), lr=self.learning_rate)
scheduler = transformers.get_linear_schedule_with_warmup(optimizer, self.num_warmup_steps, len(self.trainer.datamodule.train_dataloader()) // self.trainer.accumulate_grad_batches)
return [optimizer], [scheduler]
def test_step(self, batch, batch_idx):
return self.validation_step(batch, batch_idx, mode="test")
def validation_step(self, batch, batch_idx, mode="val"):
outputs = self.forward(input_ids=batch[0], attention_mask=batch[1], labels=batch[2])
loss = outputs['loss']
self.log("{}_loss".format(mode), loss, prog_bar=True)
ret = {"loss": loss}
if self.binary:
preds = torch.argmax(outputs['logits'], axis=1).tolist()
gold = batch[2].tolist()
ret["preds"] = preds
ret["gold"] = gold
# f1 = sklearn.metrics.f1_score(gold, preds)
# acc = sklearn.metrics.accuracy_score(gold, preds)
# ret["acc"] = acc
# ret["f1"] = f1
# self.log("{}_acc".format(mode), acc, prog_bar=True)
# self.log("{}_f1".format(mode), f1, prog_bar=True)
else:
preds = outputs['logits'].tolist()
gold = batch[2].tolist()
ret['preds'] = preds
ret['gold'] = gold
# rmse = (torch.mean((batch[2] - outputs['logits'])**2)**0.5).item()
# self.log("{}_rmse".format(mode), rmse, prog_bar=True)
# ret["rmse"] = rmse
return {"loss": loss, "log": ret}
def validation_epoch_end(self, outputs, mode="val"):
gold = []
preds = []
for batch in outputs:
gold.extend(batch['log']['gold'])
preds.extend(batch['log']['preds'])
if self.binary:
f1 = sklearn.metrics.f1_score(gold, preds)
acc = sklearn.metrics.accuracy_score(gold, preds)
self.log("{}_acc".format(mode), acc, prog_bar=True)
self.log("{}_f1".format(mode), f1, prog_bar=True)
else:
rmse = (torch.mean((torch.tensor(gold) - torch.tensor(preds))**2)**0.5).item()
self.log("{}_rmse".format(mode), rmse, prog_bar=True)
def test_epoch_end(self, outputs):
return self.validation_epoch_end(outputs, mode="test")
def predict_step(self, batch, batch_idx):
preds = self.forward(input_ids=batch[0], attention_mask=batch[1])
if self.binary:
ret = preds['logits'].tolist()
else:
ret = preds['logits'].view(-1).tolist()
return ret
@staticmethod
def add_model_specific_args(parent_parser):
parser = parent_parser.add_argument_group("RegressionModel")
parser.add_argument('--pretrained_model', type=str)
parser.add_argument('--learning_rate', type=float, default="5e-6")
parser.add_argument('--num_warmup_steps', type=float, default="0")
return parent_parser
if __name__ == "__main__":
parser = ArgumentParser()
parser.add_argument("--train", action="store_true")
parser.add_argument("--test", action="store_true")
parser.add_argument("--load_model", type=str)
parser.add_argument("--train_file", type=str)
parser.add_argument("--test_file", type=str)
parser.add_argument("--binary", action="store_true")
parser.add_argument("--seed", type=int, default=42)
parser.add_argument("--batch_size", type=int, default=64)
parser.add_argument("--max_length", type=int, default=128)
parser.add_argument("--model_save_location", type=str)
parser.add_argument("--preds_save_location", type=str)
parser.add_argument("--preds_save_logits", action="store_true")
parser.add_argument("--strategy_words", type=str)
parser.add_argument("--strategy_words_replacement_negate", action="store_true")
parser.add_argument("--random_masking_ratio", type=float)
parser = RegressionModel.add_model_specific_args(parser)
parser = pl.Trainer.add_argparse_args(parser)
args = parser.parse_args()
print(args)
pl.utilities.seed.seed_everything(seed=args.seed)
if args.load_model:
model = RegressionModel.load_from_checkpoint(args.load_model)
tokenizer = model.tokenizer
else:
tokenizer = transformers.AutoTokenizer.from_pretrained(args.pretrained_model)
model = RegressionModel(pretrained_model=args.pretrained_model, binary=args.binary, learning_rate=args.learning_rate, num_warmup_steps=args.num_warmup_steps, tokenizer=tokenizer)
trainer = pl.Trainer.from_argparse_args(args)
dataset = MyDataModule(train_file=args.train_file, test_file=args.test_file, binary=model.binary, max_length=args.max_length, batch_size=args.batch_size, tokenizer=tokenizer, strategy_words_replacement_negate=args.strategy_words_replacement_negate, strategy_words=args.strategy_words, random_masking_ratio=args.random_masking_ratio)
dataset.setup()
if args.train:
trainer.fit(model, dataset)
if args.test:
trainer.test(model, dataset.test_dataloader())
if args.preds_save_location:
data = MyDataModule.read_file(args.test_file, True)
strategy_words = None
if args.strategy_words:
strategy_words = pd.read_csv(args.strategy_words)
strategy_words = set(list(args.strategy_words.values[:, 1:].reshape(-1)))
tokenized = MyDataModule.tokenize(data, tokenizer, args.max_length, args.strategy_words_replacement_negate, strategy_words, args.random_masking_ratio)
input_data = torch.utils.data.DataLoader(torch.utils.data.TensorDataset(tokenized['input_ids'], tokenized['attention_mask']), batch_size=args.batch_size)
preds = trainer.predict(model, input_data, return_predictions=True)
preds = [t for y in preds for t in y]
preds = torch.tensor(preds)
if model.binary:
if args.preds_save_logits:
preds = torch.softmax(preds, axis=1)[:, 1].tolist()
else:
preds = preds.argmax(axis=1).tolist()
else:
preds = preds.view(-1).tolist()
preds = [str(t) for t in preds]
with open(args.preds_save_location, 'w') as f:
f.write('\n'.join(preds) + '\n')
if args.model_save_location:
trainer.save_checkpoint(args.model_save_location, weights_only=True)
|