File size: 12,812 Bytes
d948b6d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
from argparse import ArgumentParser
from typing import List, Dict

import numpy as np
import pytorch_lightning as pl
import sklearn.metrics
import sklearn.model_selection
import torch
import torch.optim
import torch.utils.data
import transformers
import pandas as pd
import random
import sklearn.metrics

try:
    from polyglot.text import Text
except:
    print("polyglot not installed. Cannot use --strategy_words")

class MyDataModule(pl.LightningDataModule):
    def __init__(self, train_file, test_file, binary, tokenizer, max_length, batch_size, strategy_words_replacement_negate=False, strategy_words=None, random_masking_ratio=None):
        super().__init__()
        self.train_file = train_file
        self.test_file = test_file
        self.binary = binary
        self.max_length = max_length
        self.batch_size = batch_size
        self.tokenizer = tokenizer

        if strategy_words:
            self.strategy_words = pd.read_csv(strategy_words)
            self.strategy_words = set(list(self.strategy_words.values[:, 1:].reshape(-1)))
        else:
            self.strategy_words = None
        self.strategy_words_replacement_negate = strategy_words_replacement_negate
        self.random_masking_ratio = random_masking_ratio

    @staticmethod   
    def read_file(file_name, text_only=False):
        if file_name.split(".")[-1] == "csv":
            df = pd.read_csv(file_name)
            data = [(a, b) for a, b in zip(list(df['sentence']), df['score'])]
            if text_only:
                data = [t[0] for t in data]
        else:
            data = open(file_name).read().strip().split('\n')
        return data

    def setup(self, stage=None):
        if self.train_file:
            self.train_data = MyDataModule.read_file(self.train_file)
            self.train_data, self.val_data = sklearn.model_selection.train_test_split(self.train_data, shuffle=False, test_size=0.2)
        if self.test_file:
            self.test_data = MyDataModule.read_file(self.test_file)

    def prepare_dataloader(self, mode):
        if mode == "train":
            data = self.train_data
        elif mode == "val":
            data = self.val_data
        else:
            data = self.test_data

        # tokenized = self.tokenizer([t[0] for t in data], padding="max_length", truncation=True, max_length=self.max_length, return_tensors="pt")
        tokenized = MyDataModule.tokenize([t[0] for t in data], self.tokenizer, self.max_length, self.strategy_words_replacement_negate, self.strategy_words, self.random_masking_ratio)
        if self.binary:
            labels = torch.tensor([t[1] > 0 for t in data], dtype=int)
        else:
            labels = torch.tensor([t[1] for t in data])

        if mode == "train":
            weights = torch.zeros_like(labels)
            weights[labels == 0] = labels.shape[0] - labels.sum()
            weights[labels == 1] = labels.sum()
            return torch.utils.data.DataLoader(torch.utils.data.TensorDataset(tokenized['input_ids'], tokenized['attention_mask'], labels), batch_size=self.batch_size, sampler=torch.utils.data.WeightedRandomSampler(1 / weights, len(weights), replacement=True))
        else:
            return torch.utils.data.DataLoader(torch.utils.data.TensorDataset(tokenized['input_ids'], tokenized['attention_mask'], labels), batch_size=self.batch_size)

    @staticmethod
    def tokenize(data: List[str], tokenizer, max_length, strategy_words_replacement_negate, strategy_words, random_masking_ratio):
        if strategy_words is not None or random_masking_ratio is not None:
            tokenized_data = []
            for sentence in data:
                words = Text(sentence).words
                words = [t.lower() for t in words]
                if strategy_words:
                    words = [t if ((t in strategy_words) != strategy_words_replacement_negate) else tokenizer.mask_token for t in words]
                elif random_masking_ratio:
                    words = [t if random.random() <= random_masking_ratio else tokenizer.mask_token for t in words]
                tokenized_data.append(' '.join(words))
            out = tokenizer(tokenized_data, padding="max_length", truncation=True, max_length=max_length, return_tensors="pt")
            # out['attention_mask'] = torch.tensor(out['input_ids'] != tokenizer.pad_token_id, dtype=int)
            return out
        else:
            return tokenizer(data, padding="max_length", truncation=True, max_length=max_length, return_tensors="pt")

    def train_dataloader(self):
        return self.prepare_dataloader("train")
        # return torch.utils.data.DataLoader(MyDataModule.CustomDataset1(self.tokenizer, self.train_data, self.max_length), batch_size=self.batch_size)

    def test_dataloader(self):
        return self.prepare_dataloader("test")
        # return torch.utils.data.DataLoader(MyDataModule.CustomDataset1(self.tokenizer, self.test_data, self.max_length), batch_size=self.batch_size)

    def val_dataloader(self):
        return self.prepare_dataloader("val")
        # return torch.utils.data.DataLoader(MyDataModule.CustomDataset1(self.tokenizer, self.val_data, self.max_length), batch_size=self.batch_size)


class RegressionModel(pl.LightningModule):
    def __init__(self, pretrained_model, binary, learning_rate, num_warmup_steps, tokenizer):
        super(RegressionModel, self).__init__()
        self.save_hyperparameters()
        self.pretrained_model = pretrained_model
        self.binary = binary
        self.learning_rate = learning_rate
        self.num_warmup_steps = num_warmup_steps
        self.tokenizer = tokenizer
        self.model = transformers.AutoModelForSequenceClassification.from_pretrained(self.pretrained_model, num_labels=2 if self.binary else 1)

    def forward(self, **kwargs):
        return self.model(**kwargs)

    def training_step(self, batch, batch_idx):
        outputs = self.forward(input_ids=batch[0], attention_mask=batch[1], labels=batch[2])
        loss = outputs['loss']
        ret = {"loss": loss}
        if self.binary:
            acc = torch.tensor(batch[2] == torch.argmax(outputs['logits']), dtype=float).mean().item()
            ret["acc"] = acc
        else:
            rmse = (torch.mean((batch[2] - outputs['logits'])**2)**0.5).item()
            ret["rmse"] = rmse

        return {"loss": loss, "log": ret}

    def configure_optimizers(self):
        optimizer = torch.optim.AdamW(self.parameters(), lr=self.learning_rate)
        scheduler = transformers.get_linear_schedule_with_warmup(optimizer, self.num_warmup_steps, len(self.trainer.datamodule.train_dataloader()) // self.trainer.accumulate_grad_batches)
        return [optimizer], [scheduler]

    def test_step(self, batch, batch_idx):
        return self.validation_step(batch, batch_idx, mode="test")

    def validation_step(self, batch, batch_idx, mode="val"):
        outputs = self.forward(input_ids=batch[0], attention_mask=batch[1], labels=batch[2])
        loss = outputs['loss']
        self.log("{}_loss".format(mode), loss, prog_bar=True)

        ret = {"loss": loss}
        if self.binary:
            preds = torch.argmax(outputs['logits'], axis=1).tolist()
            gold = batch[2].tolist()
            ret["preds"] = preds
            ret["gold"] = gold
            # f1 = sklearn.metrics.f1_score(gold, preds)
            # acc = sklearn.metrics.accuracy_score(gold, preds)
            # ret["acc"] = acc
            # ret["f1"] = f1
            # self.log("{}_acc".format(mode), acc, prog_bar=True)
            # self.log("{}_f1".format(mode), f1, prog_bar=True)
        else:
            preds = outputs['logits'].tolist()
            gold = batch[2].tolist()
            ret['preds'] = preds
            ret['gold'] = gold
            # rmse = (torch.mean((batch[2] - outputs['logits'])**2)**0.5).item()
            # self.log("{}_rmse".format(mode), rmse, prog_bar=True)
            # ret["rmse"] = rmse

        return {"loss": loss, "log": ret}

    def validation_epoch_end(self, outputs, mode="val"):
        gold = []
        preds = []
        for batch in outputs:
            gold.extend(batch['log']['gold'])
            preds.extend(batch['log']['preds'])
        if self.binary:
            f1 = sklearn.metrics.f1_score(gold, preds)
            acc = sklearn.metrics.accuracy_score(gold, preds)
            self.log("{}_acc".format(mode), acc, prog_bar=True)
            self.log("{}_f1".format(mode), f1, prog_bar=True)
        else:
            rmse = (torch.mean((torch.tensor(gold) - torch.tensor(preds))**2)**0.5).item()
            self.log("{}_rmse".format(mode), rmse, prog_bar=True)

    def test_epoch_end(self, outputs):
        return self.validation_epoch_end(outputs, mode="test")

    def predict_step(self, batch, batch_idx):
        preds = self.forward(input_ids=batch[0], attention_mask=batch[1])
        if self.binary:
            ret = preds['logits'].tolist()
        else:
            ret = preds['logits'].view(-1).tolist()
        return ret

    @staticmethod
    def add_model_specific_args(parent_parser):
        parser = parent_parser.add_argument_group("RegressionModel")
        parser.add_argument('--pretrained_model', type=str)
        parser.add_argument('--learning_rate', type=float, default="5e-6")
        parser.add_argument('--num_warmup_steps', type=float, default="0")
        return parent_parser


if __name__ == "__main__":
    parser = ArgumentParser()
    parser.add_argument("--train", action="store_true")
    parser.add_argument("--test", action="store_true")
    parser.add_argument("--load_model", type=str)
    parser.add_argument("--train_file", type=str)
    parser.add_argument("--test_file", type=str)
    parser.add_argument("--binary", action="store_true")
    parser.add_argument("--seed", type=int, default=42)
    parser.add_argument("--batch_size", type=int, default=64)
    parser.add_argument("--max_length", type=int, default=128)
    parser.add_argument("--model_save_location", type=str)
    parser.add_argument("--preds_save_location", type=str)
    parser.add_argument("--preds_save_logits", action="store_true")
    parser.add_argument("--strategy_words", type=str)
    parser.add_argument("--strategy_words_replacement_negate", action="store_true")
    parser.add_argument("--random_masking_ratio", type=float)
    parser = RegressionModel.add_model_specific_args(parser)
    parser = pl.Trainer.add_argparse_args(parser)
    args = parser.parse_args()
    print(args)

    pl.utilities.seed.seed_everything(seed=args.seed)
    if args.load_model:
        model = RegressionModel.load_from_checkpoint(args.load_model)
        tokenizer = model.tokenizer
    else:
        tokenizer = transformers.AutoTokenizer.from_pretrained(args.pretrained_model)
        model = RegressionModel(pretrained_model=args.pretrained_model, binary=args.binary, learning_rate=args.learning_rate, num_warmup_steps=args.num_warmup_steps, tokenizer=tokenizer)
    trainer = pl.Trainer.from_argparse_args(args)

    dataset = MyDataModule(train_file=args.train_file, test_file=args.test_file, binary=model.binary, max_length=args.max_length, batch_size=args.batch_size, tokenizer=tokenizer, strategy_words_replacement_negate=args.strategy_words_replacement_negate, strategy_words=args.strategy_words, random_masking_ratio=args.random_masking_ratio)
    dataset.setup()

    if args.train:
        trainer.fit(model, dataset)

    if args.test:
        trainer.test(model, dataset.test_dataloader())

    if args.preds_save_location:
        data = MyDataModule.read_file(args.test_file, True)
        strategy_words = None
        if args.strategy_words:
            strategy_words = pd.read_csv(args.strategy_words)
            strategy_words = set(list(args.strategy_words.values[:, 1:].reshape(-1)))
        tokenized = MyDataModule.tokenize(data, tokenizer, args.max_length, args.strategy_words_replacement_negate, strategy_words, args.random_masking_ratio)
        input_data = torch.utils.data.DataLoader(torch.utils.data.TensorDataset(tokenized['input_ids'], tokenized['attention_mask']), batch_size=args.batch_size)
        preds = trainer.predict(model, input_data, return_predictions=True)
        preds = [t for y in preds for t in y]
        preds = torch.tensor(preds)
        if model.binary:
            if args.preds_save_logits:
                preds = torch.softmax(preds, axis=1)[:, 1].tolist()
            else:
                preds = preds.argmax(axis=1).tolist()
        else:
            preds = preds.view(-1).tolist()
        preds = [str(t) for t in preds]

        with open(args.preds_save_location, 'w') as f:
            f.write('\n'.join(preds) + '\n')

    if args.model_save_location:
        trainer.save_checkpoint(args.model_save_location, weights_only=True)