Genius1237 commited on
Commit
dfc6306
1 Parent(s): f325b63

Add link to pretrained model, reorganize readme

Browse files
Files changed (1) hide show
  1. README.md +24 -19
README.md CHANGED
@@ -47,6 +47,30 @@ data/
47
  `data/binary` is a filtered version of the above where sentences from the top and bottom 25 percentile of scores is only present. This is the data that we used for training and evaluation in the paper.
48
  `data/unlabelled_train_sets`
49
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
50
  If you use the English train or test data, please cite the Stanford Politeness Dataset
51
  ```
52
  @inproceedings{danescu-niculescu-mizil-etal-2013-computational,
@@ -81,22 +105,3 @@ If you use the test data from the 9 target languages, please cite our paper
81
  }
82
 
83
  ```
84
-
85
- ## Code
86
- `politeness_regresor.py` is used for training and evaluation of transformer models
87
-
88
- To train a model
89
- ```
90
- python politeness_regressor.py --train_file data/binary/en_train_binary.csv --test_file data/binary/en_test_binary.csv --model_save_location model.pt --pretrained_model xlm-roberta-large --gpus 1 --batch_size 4 --accumulate_grad_batches 8 --max_epochs 5 --checkpoint_callback False --logger False --precision 16 --train --test --binary --learning_rate 5e-6
91
- ```
92
-
93
- To test this trained model on $lang
94
- ```
95
- python politeness_regressor.py --test_file data/binary/${lang}_test_binary.csv --load_model model.pt --gpus 1 --batch_size 32 --test --binary
96
- ```
97
-
98
- ## Politeness Strategies
99
- `strategies` contains the processed strategy lexicon for different languages. `strategies/learnt_strategies.xlsx` contains the human edited strategies for 4 langauges
100
-
101
- ## Annotation Interface
102
- `annotation.html` contains the UI used for conducting data annotation
 
47
  `data/binary` is a filtered version of the above where sentences from the top and bottom 25 percentile of scores is only present. This is the data that we used for training and evaluation in the paper.
48
  `data/unlabelled_train_sets`
49
 
50
+ ## Code
51
+ `politeness_regresor.py` is used for training and evaluation of transformer models
52
+
53
+ To train a model
54
+ ```
55
+ python politeness_regressor.py --train_file data/binary/en_train_binary.csv --test_file data/binary/en_test_binary.csv --model_save_location model.pt --pretrained_model xlm-roberta-large --gpus 1 --batch_size 4 --accumulate_grad_batches 8 --max_epochs 5 --checkpoint_callback False --logger False --precision 16 --train --test --binary --learning_rate 5e-6
56
+ ```
57
+
58
+ To test this trained model on $lang
59
+ ```
60
+ python politeness_regressor.py --test_file data/binary/${lang}_test_binary.csv --load_model model.pt --gpus 1 --batch_size 32 --test --binary
61
+ ```
62
+
63
+ ## Pretrained Model
64
+ XLM-Roberta Large finetuned on the English train set (as discussed and evaluated in the paper) can be found [here](https://huggingface.co/Genius1237/xlm-roberta-large-tydip)
65
+
66
+ ## Politeness Strategies
67
+ `strategies` contains the processed strategy lexicon for different languages. `strategies/learnt_strategies.xlsx` contains the human edited strategies for 4 langauges
68
+
69
+ ## Annotation Interface
70
+ `annotation.html` contains the UI used for conducting data annotation
71
+
72
+ ## Citation
73
+
74
  If you use the English train or test data, please cite the Stanford Politeness Dataset
75
  ```
76
  @inproceedings{danescu-niculescu-mizil-etal-2013-computational,
 
105
  }
106
 
107
  ```