|
--- |
|
dataset_info: |
|
features: |
|
- name: tokens |
|
sequence: string |
|
- name: tags |
|
sequence: int64 |
|
splits: |
|
- name: train |
|
num_bytes: 118725876 |
|
num_examples: 88619 |
|
- name: test |
|
num_bytes: 29511302 |
|
num_examples: 22110 |
|
download_size: 34363806 |
|
dataset_size: 148237178 |
|
configs: |
|
- config_name: default |
|
data_files: |
|
- split: train |
|
path: data/train-* |
|
- split: test |
|
path: data/test-* |
|
task_categories: |
|
- token-classification |
|
--- |
|
|
|
# Mountain Names NER Dataset |
|
|
|
## Dataset Description |
|
A Named Entity Recognition dataset focused on identifying mountain names in text. |
|
The dataset contains tokenized text with corresponding NER tags where: |
|
- Tag 1: Mountain name |
|
- Tag 0: Not a mountain name |
|
|
|
## Dataset Structure |
|
The dataset contains two main columns: |
|
- `tokens`: List of tokenized words |
|
- `tags`: Corresponding NER tags (0 or 1) |
|
|
|
## Example: |
|
```python |
|
{ |
|
'tokens': ['The', 'Everest', 'is', 'the', 'highest', 'peak'], |
|
'tags': [0, 1, 0, 0, 0, 0] |
|
} |
|
``` |
|
|
|
## Usage: |
|
```python |
|
from datasets import load_dataset |
|
|
|
dataset = load_dataset("Gepe55o/mountain-ner-dataset") |
|
|
|
train_data = dataset["train"] |
|
test_data = dataset["test"] |
|
``` |
|
|
|
## Dataset creation: |
|
- Source data collected from [NERetrive](https://arxiv.org/pdf/2310.14282) and [Few-NERD](https://arxiv.org/pdf/2105.07464v6) datasets |
|
- Filtered for mountain-related entities |
|
- Converted to binary classification (mountain/non-mountain) |
|
|
|
|