GoodBaiBai88 commited on
Commit
5ec6567
1 Parent(s): 648604f

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +223 -0
README.md CHANGED
@@ -1,3 +1,226 @@
1
  ---
2
  license: apache-2.0
 
 
 
 
 
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  license: apache-2.0
3
+ tags:
4
+ - medical
5
+ - 3D medical image caption
6
+ - image-text pair
7
+ - medical report
8
+ size_categories:
9
+ - 100K<n<1M
10
  ---
11
+
12
+ ## Dataset Description
13
+ Large-scale 3D medical multi-modal dataset - Image-Text Pair Dataset (M3D-Cap)
14
+
15
+
16
+ ### Dataset Introduction
17
+ Medical institutions, such as hospitals, store vast amounts of multi-modal data,
18
+ including medical images and diagnostic reports.
19
+ However, disclosing these multi-modal datasets involving patient data faces challenges due to sensitivity and privacy concerns.
20
+ To circumvent these limitations, we collected medical images and reports from publicly accessible professional medical websites.
21
+ Specifically, each patient case in our dataset includes multiple images along with their corresponding reports, which experts from the Radiopaedia platform meticulously review.
22
+ Given the crucial role of 3D CT in medical image analysis, particularly in the diagnosis, localization, and measurement of systemic lesions,
23
+ we focus on 3D CT data. We successfully constructed a largest-scale 3D medical image-text paired dataset, named M3D-Cap,
24
+ comprising 120K pairs of image-text data. Overall, it is divided into two data folders named ct_case and ct_quizze.
25
+ ct_quizze is used for medical exams and has higher quality. Each folder contains some image folders and one text file.
26
+ The image folders contain multiple 2D slices of 3D images, while the text files provide English reports describing the corresponding 3D images,
27
+ including types of abnormalities and lesions. M3D_Cap.json provides the split scheme.
28
+
29
+
30
+ ### Supported Tasks
31
+ M3D-Cap supports various image-text multimodal tasks in 3D medical scenarios,
32
+ including image-text retrieval, report generation, and image generation.
33
+
34
+ ## Dataset Format and Structure
35
+
36
+ ### Data Format
37
+ <pre>
38
+ M3D_Seg/
39
+ ct_case/
40
+ 000006/
41
+ Axial_non_contrast/
42
+ 0.jpeg
43
+ 1.jpeg
44
+ ......
45
+ text.txt
46
+ ......
47
+ ct_quizze/
48
+ 000007/
49
+ Axial_non_contrast/
50
+ 0.png
51
+ 1.png
52
+ ......
53
+ text.txt
54
+ ......
55
+ ......
56
+ </pre>
57
+
58
+ ### Dataset Download
59
+ #### Clone with HTTP
60
+ ```bash
61
+ git clone
62
+ ```
63
+ #### Manual Download
64
+ Download all files from the dataset file manually, which can be done using batch download tools.
65
+ Note: Due to the large size of the overall dataset, it is divided into subfiles of 20G each.
66
+ After downloading all files, extract them together to obtain the complete data.
67
+
68
+
69
+ ### Dataset Loading Method
70
+ #### 1. Preprocessing
71
+ Combine slices under each folder in the dataset to form 3D images and name them according to the image file names (retain plane and phase information),
72
+ saving them as npy files. Filter the text reports in the dataset to obtain high-quality descriptions.
73
+
74
+ #### 2. Build Dataset
75
+ We provide sample code for building the dataset
76
+
77
+ ```python
78
+ class CapDataset(Dataset):
79
+ def __init__(self, args, tokenizer, mode="train"):
80
+ self.args = args
81
+ self.data_root = args.data_root
82
+ self.tokenizer = tokenizer
83
+ self.mode = mode
84
+
85
+ self.image_tokens = "<im_patch>" * args.proj_out_num
86
+
87
+ with open(args.cap_data_path, 'r') as file:
88
+ self.json_file = json.load(file)
89
+ self.data_list = self.json_file[mode]
90
+
91
+ self.caption_prompts = [
92
+ "Can you provide a caption consists of findings for this medical image?",
93
+ "Describe the findings of the medical image you see.",
94
+ "Please caption this medical scan with findings.",
95
+ "What is the findings of this image?",
96
+ "Describe this medical scan with findings.",
97
+ "Please write a caption consists of findings for this image.",
98
+ "Can you summarize with findings the images presented?",
99
+ "Please caption this scan with findings.",
100
+ "Please provide a caption consists of findings for this medical image.",
101
+ "Can you provide a summary consists of findings of this radiograph?",
102
+ "What are the findings presented in this medical scan?",
103
+ "Please write a caption consists of findings for this scan.",
104
+ "Can you provide a description consists of findings of this medical scan?",
105
+ "Please caption this medical scan with findings.",
106
+ "Can you provide a caption consists of findings for this medical scan?"
107
+ ]
108
+
109
+ train_transform = mtf.Compose(
110
+ [
111
+ mtf.RandRotate90(prob=0.5, spatial_axes=(1, 2)),
112
+ mtf.RandFlip(prob=0.10, spatial_axis=0),
113
+ mtf.RandFlip(prob=0.10, spatial_axis=1),
114
+ mtf.RandFlip(prob=0.10, spatial_axis=2),
115
+ mtf.RandScaleIntensity(factors=0.1, prob=0.5),
116
+ mtf.RandShiftIntensity(offsets=0.1, prob=0.5),
117
+
118
+ mtf.ToTensor(dtype=torch.float),
119
+ ]
120
+ )
121
+
122
+ val_transform = mtf.Compose(
123
+ [
124
+ mtf.ToTensor(dtype=torch.float),
125
+ ]
126
+ )
127
+ set_track_meta(False)
128
+
129
+ if mode == 'train':
130
+ self.transform = train_transform
131
+ elif mode == 'validation':
132
+ self.transform = val_transform
133
+ elif mode == 'test':
134
+ self.transform = val_transform
135
+
136
+ def __len__(self):
137
+ return len(self.data_list)
138
+
139
+ def __getitem__(self, idx):
140
+ max_attempts = 100
141
+ for _ in range(max_attempts):
142
+ try:
143
+ data = self.data_list[idx]
144
+ image_path = data["image"]
145
+ image_abs_path = os.path.join(self.data_root, image_path)
146
+ image = np.load(image_abs_path) # nomalized 0-1, C,D,H,W
147
+ image = self.transform(image)
148
+
149
+ text_path = data["text"]
150
+ text_abs_path = os.path.join(self.data_root, text_path)
151
+ with open(text_abs_path, 'r') as text_file:
152
+ raw_text = text_file.read()
153
+ answer = raw_text
154
+
155
+ prompt_question = random.choice(self.caption_prompts)
156
+
157
+ question = self.image_tokens + prompt_question
158
+
159
+ text_tensor = self.tokenizer(
160
+ question + ' ' + answer, max_length=self.args.max_length, truncation=True, padding="max_length", return_tensors="pt"
161
+ )
162
+
163
+ input_id = text_tensor["input_ids"][0]
164
+ attention_mask = text_tensor["attention_mask"][0]
165
+
166
+ valid_len = torch.sum(attention_mask)
167
+ if valid_len < len(input_id):
168
+ input_id[valid_len] = self.tokenizer.eos_token_id
169
+
170
+ question_tensor = self.tokenizer(
171
+ question, max_length=self.args.max_length, truncation=True, padding="max_length", return_tensors="pt"
172
+ )
173
+ question_len = torch.sum(question_tensor["attention_mask"][0])
174
+
175
+ label = input_id.clone()
176
+ label[label == self.tokenizer.pad_token_id] = -100
177
+ label[:question_len] = -100
178
+
179
+ ret = {
180
+ 'image': image,
181
+ 'input_id': input_id,
182
+ 'label': label,
183
+ 'attention_mask': attention_mask,
184
+ 'question': question,
185
+ 'answer': answer,
186
+ 'question_type': "Caption",
187
+ }
188
+ return ret
189
+
190
+ except Exception as e:
191
+ print(f"Error in __getitem__ at index {idx}: {e}")
192
+ idx = random.randint(0, len(self.data_list) - 1)
193
+ ```
194
+
195
+
196
+ ### Data Splitting
197
+ The entire dataset is split into
198
+ ‘train, validation, test100, test500, test1k, and test’ using a json file.
199
+ considering testing costs, we provide different quantities of test samples from 100 to 2k, with the number of ‘test‘ being 2k.
200
+
201
+ ## Dataset Copyright Information
202
+
203
+ All images and reports involved in this dataset are publicly available data.
204
+ For detailed copyright information, please refer to the corresponding links.
205
+
206
+ ## Citation
207
+ If you use this dataset, please cite the following works:
208
+
209
+ ```BibTeX
210
+ @misc{bai2024m3d,
211
+ title={M3D: Advancing 3D Medical Image Analysis with Multi-Modal Large Language Models},
212
+ author={Fan Bai and Yuxin Du and Tiejun Huang and Max Q. -H. Meng and Bo Zhao},
213
+ year={2024},
214
+ eprint={2404.00578},
215
+ archivePrefix={arXiv},
216
+ primaryClass={cs.CV}
217
+ }
218
+ @misc{du2024segvol,
219
+ title={SegVol: Universal and Interactive Volumetric Medical Image Segmentation},
220
+ author={Yuxin Du and Fan Bai and Tiejun Huang and Bo Zhao},
221
+ year={2024},
222
+ eprint={2311.13385},
223
+ archivePrefix={arXiv},
224
+ primaryClass={cs.CV}
225
+ }
226
+ ```