GoodBaiBai88
commited on
Commit
•
d8c62b6
1
Parent(s):
b40a6b0
Upload m3d_cap_data_prepare.py
Browse files- m3d_cap_data_prepare.py +122 -0
m3d_cap_data_prepare.py
ADDED
@@ -0,0 +1,122 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import numpy as np
|
3 |
+
from PIL import Image
|
4 |
+
import concurrent.futures
|
5 |
+
from tqdm import tqdm
|
6 |
+
from collections import Counter
|
7 |
+
import unicodedata
|
8 |
+
import monai.transforms as mtf
|
9 |
+
from multiprocessing import Pool
|
10 |
+
from unidecode import unidecode
|
11 |
+
|
12 |
+
# input_dir = 'PATH/M3D_Cap/ct_quizze/'
|
13 |
+
# output_dir = 'PATH/M3D_Cap_npy/ct_quizze/'
|
14 |
+
|
15 |
+
input_dir = 'PATH/M3D_Cap/ct_case/'
|
16 |
+
output_dir = 'PATH/M3D_Cap_npy/ct_case/'
|
17 |
+
|
18 |
+
# Get all subfolders [00001, 00002....]
|
19 |
+
subfolders = [folder for folder in os.listdir(input_dir) if os.path.isdir(os.path.join(input_dir, folder))]
|
20 |
+
|
21 |
+
|
22 |
+
transform = mtf.Compose([
|
23 |
+
mtf.CropForeground(),
|
24 |
+
mtf.Resize(spatial_size=[32, 256, 256], mode="bilinear")
|
25 |
+
])
|
26 |
+
|
27 |
+
|
28 |
+
def process_subfolder(subfolder):
|
29 |
+
output_id_folder = os.path.join(output_dir, subfolder)
|
30 |
+
input_id_folder = os.path.join(input_dir, subfolder)
|
31 |
+
|
32 |
+
os.makedirs(output_id_folder, exist_ok=True)
|
33 |
+
|
34 |
+
for subsubfolder in os.listdir(input_id_folder):
|
35 |
+
if subsubfolder.endswith('.txt'):
|
36 |
+
text_path = os.path.join(input_dir, subfolder, subsubfolder)
|
37 |
+
with open(text_path, 'r') as file:
|
38 |
+
text_content = file.read()
|
39 |
+
|
40 |
+
search_text = "study_findings:"
|
41 |
+
index = text_content.find(search_text)
|
42 |
+
|
43 |
+
if index != -1:
|
44 |
+
filtered_text = text_content[index + len(search_text):].replace("\n", " ").strip()
|
45 |
+
else:
|
46 |
+
print("Specified string not found")
|
47 |
+
filtered_text = text_content.replace("\n", " ").strip()
|
48 |
+
|
49 |
+
|
50 |
+
if len(filtered_text.replace("\n", "").replace(" ", "")) < 5:
|
51 |
+
search_text = "discussion:"
|
52 |
+
index = text_content.find(search_text)
|
53 |
+
if index != -1:
|
54 |
+
filtered_text = text_content[index + len(search_text):].replace("\n", " ").strip()
|
55 |
+
else:
|
56 |
+
print("Specified string not found")
|
57 |
+
filtered_text = text_content.replace("\n", " ").strip()
|
58 |
+
|
59 |
+
|
60 |
+
if len(filtered_text.replace("\n", "").replace(" ", "")) < 5:
|
61 |
+
filtered_text = text_content.replace("\n", " ").strip()
|
62 |
+
|
63 |
+
|
64 |
+
new_text_path = os.path.join(output_dir, subfolder, subsubfolder)
|
65 |
+
with open(new_text_path, 'w') as new_file:
|
66 |
+
new_file.write(filtered_text)
|
67 |
+
|
68 |
+
subsubfolder_path = os.path.join(input_dir, subfolder, subsubfolder)
|
69 |
+
|
70 |
+
if os.path.isdir(subsubfolder_path):
|
71 |
+
subsubfolder = unidecode(subsubfolder) # "Pöschl" -> Poschl
|
72 |
+
output_path = os.path.join(output_dir, subfolder, f'{subsubfolder}.npy')
|
73 |
+
|
74 |
+
image_files = [file for file in os.listdir(subsubfolder_path) if
|
75 |
+
file.endswith('.jpeg') or file.endswith('.png')]
|
76 |
+
|
77 |
+
if len(image_files) == 0:
|
78 |
+
continue
|
79 |
+
|
80 |
+
image_files.sort(key=lambda x: int(os.path.splitext(x)[0]))
|
81 |
+
|
82 |
+
images_3d = []
|
83 |
+
for image_file in image_files:
|
84 |
+
image_path = os.path.join(subsubfolder_path, image_file)
|
85 |
+
try:
|
86 |
+
img = Image.open(image_path)
|
87 |
+
img = img.convert("L")
|
88 |
+
img_array = np.array(img)
|
89 |
+
# normalization
|
90 |
+
img_array = img_array.astype(np.float32) / 255.0
|
91 |
+
images_3d.append(img_array[None])
|
92 |
+
except:
|
93 |
+
print("This image is error: ", image_path)
|
94 |
+
|
95 |
+
images_3d_pure = []
|
96 |
+
try:
|
97 |
+
img_shapes = [img.shape for img in images_3d]
|
98 |
+
item_counts = Counter(img_shapes)
|
99 |
+
most_common_shape = item_counts.most_common(1)[0][0]
|
100 |
+
for img in images_3d:
|
101 |
+
if img.shape == most_common_shape:
|
102 |
+
images_3d_pure.append(img)
|
103 |
+
final_3d_image = np.vstack(images_3d_pure)
|
104 |
+
|
105 |
+
image = final_3d_image[np.newaxis, ...]
|
106 |
+
|
107 |
+
image = image - image.min()
|
108 |
+
image = image / np.clip(image.max(), a_min=1e-8, a_max=None)
|
109 |
+
|
110 |
+
img_trans = transform(image)
|
111 |
+
|
112 |
+
np.save(output_path, img_trans)
|
113 |
+
except:
|
114 |
+
print([img.shape for img in images_3d])
|
115 |
+
print("This folder is vstack error: ", output_path)
|
116 |
+
|
117 |
+
|
118 |
+
|
119 |
+
with Pool(processes=32) as pool:
|
120 |
+
with tqdm(total=len(subfolders), desc="Processing") as pbar:
|
121 |
+
for _ in pool.imap_unordered(process_subfolder, subfolders):
|
122 |
+
pbar.update(1)
|