File size: 6,576 Bytes
79856c8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
import os
import numpy as np
import multiprocessing
import argparse
from scipy import sparse
from sklearn.model_selection import train_test_split
import json

from monai.transforms import (
    AddChanneld,
    Compose,
    LoadImaged,
    Orientationd,
)

def set_parse():
    # %% set up parser
    parser = argparse.ArgumentParser()
    parser.add_argument("-category", default=['liver', 'right kidney', 'spleen', 'pancreas', 'aorta', 'inferior vena cava', 'right adrenal gland', 'left adrenal gland', 'gallbladder', 'esophagus', 'stomach', 'duodenum', 'left kidney'], type=list)
    parser.add_argument("-image_dir", type=str, required=True)
    parser.add_argument("-label_dir", type=str, required=True)
    parser.add_argument("-dataset_code", type=str, required=True)
    parser.add_argument("-save_root", type=str, required=True)
    parser.add_argument("-test_ratio", type=float, required=True)
    
    args = parser.parse_args()
    return args

args = set_parse()

# get ct&gt dir
image_list_all = [item for item in sorted(os.listdir(args.image_dir))]
label_list_all = [item for item in sorted(os.listdir(args.label_dir))]
assert len(image_list_all) == len(label_list_all)
print('dataset size ', len(image_list_all))

# build dataset
data_path_list_all = []
for idx in range(len(image_list_all)):
    img_path = os.path.join(args.image_dir, image_list_all[idx])
    label_path = os.path.join(args.label_dir, label_list_all[idx])
    name = image_list_all[idx].split('.')[0]
    info = (idx, name, img_path, label_path)
    data_path_list_all.append(info)

img_loader = Compose(
        [
            LoadImaged(keys=['image', 'label']),
            AddChanneld(keys=['image', 'label']),
            Orientationd(keys=['image', 'label'], axcodes="RAS"),
        ]
    )

# save
save_path = os.path.join(args.save_root, args.dataset_code)
ct_save_path = os.path.join(save_path, 'ct')
gt_save_path = os.path.join(save_path, 'gt')
if not os.path.exists(ct_save_path):
    os.makedirs(ct_save_path)
if not os.path.exists(gt_save_path):
    os.makedirs(gt_save_path)

# exist file:
exist_file_list = os.listdir(ct_save_path)
print('exist_file_list ', exist_file_list)

def normalize(ct_narray):
    ct_voxel_ndarray = ct_narray.copy()
    ct_voxel_ndarray = ct_voxel_ndarray.flatten()
    # for all data
    thred = np.mean(ct_voxel_ndarray)
    voxel_filtered = ct_voxel_ndarray[(ct_voxel_ndarray > thred)]
    # for foreground data
    upper_bound = np.percentile(voxel_filtered, 99.95)
    lower_bound = np.percentile(voxel_filtered, 00.05)
    mean = np.mean(voxel_filtered)
    std = np.std(voxel_filtered)
    ### transform ###
    ct_narray = np.clip(ct_narray, lower_bound, upper_bound)
    ct_narray = (ct_narray - mean) / max(std, 1e-8)
    return ct_narray

def run(info):
    idx, file_name, case_path, label_path = info
    item = {}
    if file_name + '.npy' in exist_file_list:
        print(file_name + '.npy exist, skip')
        return
    print('process ', idx, '---' ,file_name)
    # generate ct_voxel_ndarray
    item_load = {
        'image' : case_path,
        'label' : label_path,
    }
    item_load = img_loader(item_load)
    ct_voxel_ndarray = item_load['image']
    gt_voxel_ndarray = item_load['label']

    ct_shape = ct_voxel_ndarray.shape
    item['image'] = ct_voxel_ndarray

    # generate gt_voxel_ndarray
    gt_voxel_ndarray = np.array(gt_voxel_ndarray).squeeze()
    present_categories = np.unique(gt_voxel_ndarray)
    gt_masks = []
    for cls_idx in range(len(args.category)):
        cls = cls_idx + 1
        if cls not in present_categories:
            gt_voxel_ndarray_category = np.zeros(ct_shape)
            gt_masks.append(gt_voxel_ndarray_category)
            print('case {} ==> zero category '.format(idx) + args.category[cls_idx])
            print(gt_voxel_ndarray_category.shape)
        else:
            gt_voxel_ndarray_category = gt_voxel_ndarray.copy()
            gt_voxel_ndarray_category[gt_voxel_ndarray != cls] = 0
            gt_voxel_ndarray_category[gt_voxel_ndarray == cls] = 1
            gt_masks.append(gt_voxel_ndarray_category)
    gt_voxel_ndarray = np.stack(gt_masks, axis=0)

    assert gt_voxel_ndarray.shape[0] == len(args.category), str(gt_voxel_ndarray.shape[0])
    assert gt_voxel_ndarray.shape[1:] == ct_voxel_ndarray.shape[1:]
    item['label'] = gt_voxel_ndarray.astype(np.int32)
    print(idx, ' load done!')

    #############################
    item['image'] = normalize(item['image'])
    print(idx, ' transform done')

    ############################
    print(file_name + ' ct gt <--> ', item['image'].shape, item['label'].shape)
    np.save(os.path.join(ct_save_path, file_name + '.npy'), item['image'])
    allmatrix_sp=sparse.csr_matrix(item['label'].reshape(item['label'].shape[0], -1))
    sparse.save_npz(os.path.join(gt_save_path, file_name + '.' + str(item['label'].shape)), allmatrix_sp)
    print(file_name + ' save done!')

def generate_dataset_json(root_dir, output_file, test_ratio=0.2):
    ct_dir = os.path.join(root_dir, 'ct')
    gt_dir = os.path.join(root_dir, 'gt')
    ct_paths = sorted([os.path.join(ct_dir, f) for f in sorted(os.listdir(ct_dir))])
    gt_paths = sorted([os.path.join(gt_dir, f) for f in sorted(os.listdir(gt_dir))])

    data = list(zip(ct_paths, gt_paths))
    train_data, val_data = train_test_split(data, test_size=test_ratio)
    labels = {}
    labels['0'] = 'background'
    for idx in range(len(args.category)):
        label_name = args.category[idx]
        label_id = idx + 1
        labels[str(label_id)] = label_name
    dataset = {
        'name': f'{args.dataset_code} Dataset',
        'description': f'{args.dataset_code} Dataset',
        'tensorImageSize': '4D',
        'modality': {
            '0': 'CT',
        },
        'labels': labels,
        'numTraining': len(train_data),
        'numTest': len(val_data),
        'training':   [{'image': ct_path, 'label': gt_path} for ct_path, gt_path in train_data],
        'validation': [{'image': ct_path, 'label': gt_path} for ct_path, gt_path in val_data]
    }
    with open(output_file, 'w') as f:
        print(f'{output_file} dump')
        json.dump(dataset, f, indent=2)

if __name__ == "__main__":    
    with multiprocessing.Pool(processes=10) as pool:
        pool.map(run, data_path_list_all)
    print('Process Finished!')

    generate_dataset_json(root_dir=save_path, 
                          output_file=os.path.join(save_path, f'{args.dataset_code}.json'), 
                          test_ratio=args.test_ratio)
    print('Json Split Done!')