GoodBaiBai88 commited on
Commit
4aa59b3
·
verified ·
1 Parent(s): 79856c8

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +133 -0
README.md CHANGED
@@ -1,3 +1,136 @@
1
  ---
2
  license: apache-2.0
 
 
 
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  license: apache-2.0
3
+ tags:
4
+ - medical
5
+ - 3D medical segmentation
6
+ size_categories:
7
+ - 1K<n<10K
8
  ---
9
+
10
+ ## Dataset Description
11
+ Large-scale General 3D Medical Image Segmentation Dataset (M3D-Seg)
12
+
13
+ ### Dataset Introduction
14
+ 3D medical segmentation is one of the main challenges in medical image analysis.
15
+ Currently, due to privacy and cost limitations, there is a lack of large-scale publicly available 3D medical images and annotations.
16
+ To address this, we have collected 25 publicly available 3D CT segmentation datasets,
17
+ including CHAOS, HaN-Seg, AMOS22, AbdomenCT-1k, KiTS23, KiPA22, KiTS19, BTCV, Pancreas-CT, 3D-IRCADB, FLARE22, TotalSegmentator,
18
+ CT-ORG, WORD, VerSe19, VerSe20, SLIVER07, QUBIQ, MSD-Colon, MSD-HepaticVessel, MSD-Liver, MSD-lung, MSD-pancreas, MSD-spleen,
19
+ LUNA16. These datasets are uniformly encoded from 0000-0024, totaling 5,772 3D images and 149,196 3D mask annotations.
20
+ Each mask corresponds to semantic labels represented in text.
21
+ Within each folder, there are two sub-folders, ct and gt, storing data and annotations respectively, and utilizing json files for splitting.
22
+ ‘dataset_info.txt’ describes the textual representation of each dataset label.
23
+ As a universal segmentation dataset, more public and private datasets can be unified in the same format,
24
+ thus building a large-scale 3D medical universal segmentation dataset.
25
+
26
+
27
+ ### Supported Tasks
28
+ As data can be represented in the form of image-mask-text, where masks can be converted to box coordinates through bounding boxes,
29
+ the dataset supports tasks such as: 3D segmentation: semantic segmentation, textual hint segmentation, inference segmentation, etc.
30
+ 3D localization: visual grounding, referring expression comprehension, referring expression generation.
31
+
32
+ ## Dataset Format and Structure
33
+
34
+ ### Data Format
35
+ <pre>
36
+ M3D_Seg/
37
+ 0000/
38
+ ct/
39
+ case_00000.npy
40
+ ......
41
+ gt/
42
+ case_00000.(3, 512, 512, 611).npz
43
+ ......
44
+ 0000.json
45
+ 0001/
46
+ ......
47
+ </pre>
48
+
49
+ ### Dataset Download
50
+ #### Clone with HTTP
51
+ ```bash
52
+ git clone
53
+ ```
54
+ #### Manual Download
55
+ Download all files from the dataset file manually, which can be done using batch download tools.
56
+ Note: Since the 0024 dataset is large, its compressed files are split into 00, 01, 02 three files.
57
+ Please merge and decompress them after downloading.
58
+ As the foreground in mask files is often sparse, to save storage space, we use sparse matrices for storage, saved as npz files,
59
+ with the file name containing the mask shape, please refer to ‘data_load_demo.py’ for data reading.
60
+
61
+
62
+ ### Dataset Loading Method
63
+ #### 1. If downloading this dataset directly, ‘data_process.py’ is not required for processing, skip directly to step 2
64
+ Raw data downloaded from the original data must be processed through ‘data_process.py’ and unified into the M3D-Seg dataset.
65
+ Please note that due to preprocessing, there are differences between the data provided by this dataset and its original nii.gz files.
66
+ Please refer to ‘data_process.py’ for processing methods.
67
+
68
+ #### 2. Build Dataset
69
+ We provide sample code for three tasks' Datasets, including semantic segmentation, hint segmentation, and inference segmentation.
70
+
71
+ ```python
72
+
73
+ ```
74
+
75
+
76
+
77
+
78
+ ### Data Splitting
79
+ Each file is split into ‘train, validation/test’ using json files, for ease of training and testing models.
80
+
81
+ ### Dataset Sources
82
+
83
+ | ID | Dataset | Link |
84
+ | ------------- | ------------- | ------------- |
85
+ | 0000 |CHAOS| https://chaos.grand-challenge.org/ |
86
+ | 0001 |HaN-Seg| https://han-seg2023.grand-challenge.org/|
87
+ | 0002 |AMOS22| https://amos22.grand-challenge.org/|
88
+ | 0003 |AbdomenCT-1k| https://github.com/JunMa11/AbdomenCT-1K|
89
+ | 0004 |KiTS23| https://kits-challenge.org/kits23/|
90
+ | 0005 |KiPA22| https://kipa22.grand-challenge.org/|
91
+ | 0006 |KiTS19| https://kits19.grand-challenge.org/|
92
+ | 0007 |BTCV| https://www.synapse.org/\#!Synapse:syn3193805/wiki/217752|
93
+ | 0008 |Pancreas-CT| https://wiki.cancerimagingarchive.net/display/public/pancreas-ct|
94
+ | 0009 | 3D-IRCADB | https://www.kaggle.com/datasets/nguyenhoainam27/3dircadb |
95
+ | 0010 |FLARE22| https://flare22.grand-challenge.org/|
96
+ | 0011 |TotalSegmentator| https://github.com/wasserth/TotalSegmentator|
97
+ | 0012 |CT-ORG| https://wiki.cancerimagingarchive.net/pages/viewpage.action?pageId=61080890|
98
+ | 0013 |WORD| https://paperswithcode.com/dataset/word|
99
+ | 0014 |VerSe19| https://osf.io/nqjyw/|
100
+ | 0015 |VerSe20| https://osf.io/t98fz/|
101
+ | 0016 |SLIVER07| https://sliver07.grand-challenge.org/|
102
+ | 0017 |QUBIQ| https://qubiq.grand-challenge.org/|
103
+ | 0018 |MSD-Colon| http://medicaldecathlon.com/|
104
+ | 0019 |MSD-HepaticVessel| http://medicaldecathlon.com/|
105
+ | 0020 |MSD-Liver| http://medicaldecathlon.com/|
106
+ | 0021 |MSD-lung| http://medicaldecathlon.com/|
107
+ | 0022 |MSD-pancreas| http://medicaldecathlon.com/|
108
+ | 0023 |MSD-spleen| http://medicaldecathlon.com/|
109
+ | 0024 |LUNA16| https://luna16.grand-challenge.org/Data/|
110
+
111
+
112
+ ## Dataset Copyright Information
113
+
114
+ All datasets involved in this dataset are publicly available datasets. For detailed copyright information, please refer to the corresponding dataset links.
115
+
116
+ ## Citation
117
+ If you use this dataset, please cite the following works:
118
+
119
+ ```BibTeX
120
+ @misc{bai2024m3d,
121
+ title={M3D: Advancing 3D Medical Image Analysis with Multi-Modal Large Language Models},
122
+ author={Fan Bai and Yuxin Du and Tiejun Huang and Max Q. -H. Meng and Bo Zhao},
123
+ year={2024},
124
+ eprint={2404.00578},
125
+ archivePrefix={arXiv},
126
+ primaryClass={cs.CV}
127
+ }
128
+ @misc{du2024segvol,
129
+ title={SegVol: Universal and Interactive Volumetric Medical Image Segmentation},
130
+ author={Yuxin Du and Fan Bai and Tiejun Huang and Bo Zhao},
131
+ year={2024},
132
+ eprint={2311.13385},
133
+ archivePrefix={arXiv},
134
+ primaryClass={cs.CV}
135
+ }
136
+ ```