--- license: apache-2.0 tags: - medical - 3D medical segmentation size_categories: - 1K M3D_Seg/ 0000/ ct/ case_00000.npy ...... gt/ case_00000.(3, 512, 512, 611).npz ...... 0000.json 0001/ ...... ### Dataset Download #### Clone with HTTP ```bash git clone ``` #### Manual Download Download all files from the dataset file manually, which can be done using batch download tools. Note: Since the 0024 dataset is large, its compressed files are split into 00, 01, 02 three files. Please merge and decompress them after downloading. As the foreground in mask files is often sparse, to save storage space, we use sparse matrices for storage, saved as npz files, with the file name containing the mask shape, please refer to ‘data_load_demo.py’ for data reading. ### Dataset Loading Method #### 1. If downloading this dataset directly, ‘data_process.py’ is not required for processing, skip directly to step 2 Raw data downloaded from the original data must be processed through ‘data_process.py’ and unified into the M3D-Seg dataset. Please note that due to preprocessing, there are differences between the data provided by this dataset and its original nii.gz files. Please refer to ‘data_process.py’ for processing methods. #### 2. Build Dataset We provide sample code for three tasks' Datasets, including semantic segmentation, hint segmentation, and inference segmentation. ```python ``` ### Data Splitting Each file is split into ‘train, validation/test’ using json files, for ease of training and testing models. ### Dataset Sources | ID | Dataset | Link | | ------------- | ------------- | ------------- | | 0000 |CHAOS| https://chaos.grand-challenge.org/ | | 0001 |HaN-Seg| https://han-seg2023.grand-challenge.org/| | 0002 |AMOS22| https://amos22.grand-challenge.org/| | 0003 |AbdomenCT-1k| https://github.com/JunMa11/AbdomenCT-1K| | 0004 |KiTS23| https://kits-challenge.org/kits23/| | 0005 |KiPA22| https://kipa22.grand-challenge.org/| | 0006 |KiTS19| https://kits19.grand-challenge.org/| | 0007 |BTCV| https://www.synapse.org/\#!Synapse:syn3193805/wiki/217752| | 0008 |Pancreas-CT| https://wiki.cancerimagingarchive.net/display/public/pancreas-ct| | 0009 | 3D-IRCADB | https://www.kaggle.com/datasets/nguyenhoainam27/3dircadb | | 0010 |FLARE22| https://flare22.grand-challenge.org/| | 0011 |TotalSegmentator| https://github.com/wasserth/TotalSegmentator| | 0012 |CT-ORG| https://wiki.cancerimagingarchive.net/pages/viewpage.action?pageId=61080890| | 0013 |WORD| https://paperswithcode.com/dataset/word| | 0014 |VerSe19| https://osf.io/nqjyw/| | 0015 |VerSe20| https://osf.io/t98fz/| | 0016 |SLIVER07| https://sliver07.grand-challenge.org/| | 0017 |QUBIQ| https://qubiq.grand-challenge.org/| | 0018 |MSD-Colon| http://medicaldecathlon.com/| | 0019 |MSD-HepaticVessel| http://medicaldecathlon.com/| | 0020 |MSD-Liver| http://medicaldecathlon.com/| | 0021 |MSD-lung| http://medicaldecathlon.com/| | 0022 |MSD-pancreas| http://medicaldecathlon.com/| | 0023 |MSD-spleen| http://medicaldecathlon.com/| | 0024 |LUNA16| https://luna16.grand-challenge.org/Data/| ## Dataset Copyright Information All datasets involved in this dataset are publicly available datasets. For detailed copyright information, please refer to the corresponding dataset links. ## Citation If you use this dataset, please cite the following works: ```BibTeX @misc{bai2024m3d, title={M3D: Advancing 3D Medical Image Analysis with Multi-Modal Large Language Models}, author={Fan Bai and Yuxin Du and Tiejun Huang and Max Q. -H. Meng and Bo Zhao}, year={2024}, eprint={2404.00578}, archivePrefix={arXiv}, primaryClass={cs.CV} } @misc{du2024segvol, title={SegVol: Universal and Interactive Volumetric Medical Image Segmentation}, author={Yuxin Du and Fan Bai and Tiejun Huang and Bo Zhao}, year={2024}, eprint={2311.13385}, archivePrefix={arXiv}, primaryClass={cs.CV} } ```