import numpy as np from scipy import sparse import ast import os import json uniseg_path = '/zhaobai/joint_data/UniSeg' # your path dataset_code = '0012' json_path = os.path.join('./', dataset_code, dataset_code + '.json') with open(json_path, 'r') as f: dataset_dict = json.load(f) ct_file_path = os.path.join(uniseg_path, dataset_dict['training'][0]['image']) gt_file_path = os.path.join(uniseg_path, dataset_dict['training'][0]['label']) img_array = np.load(ct_file_path)[0] print('img_array.shape ', img_array.shape) allmatrix_sp= sparse.load_npz(gt_file_path) gt_shape = ast.literal_eval(gt_file_path.split('.')[-2]) gt_array=allmatrix_sp.toarray().reshape(gt_shape) print('gt_array.shape ', gt_array.shape)