File size: 4,690 Bytes
17b4fdb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""
(pt) NERDE: NER na Defesa Econômica
(en) NERDE: NER on Economic Defense
"""


import datasets


logger = datasets.logging.get_logger(__name__)


#_CITATION = """"""

_DESCRIPTION = """
(pt) NERDE é um dataset para NER a partir de documentos jurídicos da defesa econômica em português do Brasil, foi criado em colaboração com o Cade e o laboratório LATITUDE/UnB.
(en) NERDE is a NER dataset from economic defense legal documents in Brazilian Portuguese, created in collaboration with Cade and the LATITUDE/UnB laboratory.
"""

_HOMEPAGE = "https://github.com/guipaiva/NERDE"

_TRAINING_FILE = "train.conll"
_DEV_FILE = "dev.conll"
_TEST_FILE = "test.conll"


class NerdeDataset(datasets.GeneratorBasedBuilder):

    VERSION = datasets.Version("1.0.0")

    BUILDER_CONFIGS = [
        datasets.BuilderConfig(name="NERDE", version=VERSION, description="Economic Defense NER dataset"),
    ]
    
     def _info(self):
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=datasets.Features(
                {
                    "id": datasets.Value("string"),
                    "tokens": datasets.Sequence(datasets.Value("string")),
                    "ner_tags": datasets.Sequence(
                        datasets.features.ClassLabel(
                            names=[
                                "O",
                                "B-ORG",
                                "I-ORG",
                                "B-PER",
                                "I-PER",
                                "B-TEMPO",
                                "I-TEMPO",
                                "B-LOC",
                                "I-LOC",
                                "B-LEG",
                                "I-LEG",
                                "B-DOCS",
                                "I-DOCS",
                                "B-VALOR",
                                "I-VALOR"
                            ]
                        )
                    ),
                }
            ), 
            supervised_keys=None,
            homepage=_HOMEPAGE
        )


    def _split_generators(self, dl_manager):
        """Returns SplitGenerators."""
        urls_to_download = {
            "train": _TRAINING_FILE,
            "dev": _DEV_FILE,
            "test": _TEST_FILE,
        }
        downloaded_files = dl_manager.download_and_extract(urls_to_download)

        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={"filepath": downloaded_files["train"], "split": "train"},
            ),
            datasets.SplitGenerator(
                name=datasets.Split.VALIDATION,
                gen_kwargs={"filepath": downloaded_files["dev"], "split": "validation"},
            ),
            datasets.SplitGenerator(
                name=datasets.Split.TEST,
                gen_kwargs={"filepath": downloaded_files["test"], "split": "test"},
            ),
        ]

    def _generate_examples(self, filepath, split):
        """Yields examples."""

        logger.info("⏳ Generating examples from = %s", filepath)

        with open(filepath, encoding="utf-8") as f:

            guid = 0
            tokens = []
            ner_tags = []

            for line in f:
                if line == "" or line == "\n":
                    if tokens:
                        yield guid, {
                            "id": str(guid),
                            "tokens": tokens,
                            "ner_tags": ner_tags,
                        }
                        guid += 1
                        tokens = []
                        ner_tags = []
                else:
                    splits = line.split(" ")
                    tokens.append(splits[0])
                    ner_tags.append(splits[1].rstrip())

            # last example
            yield guid, {
                "id": str(guid),
                "tokens": tokens,
                "ner_tags": ner_tags,
            }