NERDE / NERDE.py
Gpaiva's picture
fix identation
ac5ec40
raw
history blame
4.78 kB
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
(pt) NERDE: NER na Defesa Econômica
(en) NERDE: NER on Economic Defense
"""
import datasets
logger = datasets.logging.get_logger(__name__)
#_CITATION = """"""
_DESCRIPTION = """
(pt) NERDE é um dataset para NER a partir de documentos jurídicos da defesa econômica em português do Brasil, foi criado em colaboração com o Cade e o laboratório LATITUDE/UnB.
(en) NERDE is a NER dataset from economic defense legal documents in Brazilian Portuguese, created in collaboration with Cade and the LATITUDE/UnB laboratory.
"""
_HOMEPAGE = "https://github.com/guipaiva/NERDE"
_TRAINING_FILE = "train.conll"
_DEV_FILE = "dev.conll"
_TEST_FILE = "test.conll"
class NerdeDataset(datasets.GeneratorBasedBuilder):
VERSION = datasets.Version("1.0.0")
BUILDER_CONFIGS = [
datasets.BuilderConfig(name="NERDE", version=VERSION,
description="Economic Defense NER dataset"),
]
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(
{
"id": datasets.Value("string"),
"tokens": datasets.Sequence(datasets.Value("string")),
"ner_tags": datasets.Sequence(
datasets.features.ClassLabel(
names=[
"O",
"B-ORG",
"I-ORG",
"B-PER",
"I-PER",
"B-TEMPO",
"I-TEMPO",
"B-LOC",
"I-LOC",
"B-LEG",
"I-LEG",
"B-DOCS",
"I-DOCS",
"B-VALOR",
"I-VALOR"
]
)
),
}
),
supervised_keys=None,
homepage=_HOMEPAGE
)
def _split_generators(self, dl_manager):
"""Returns SplitGenerators."""
urls_to_download = {
"train": _TRAINING_FILE,
"dev": _DEV_FILE,
"test": _TEST_FILE,
}
downloaded_files = dl_manager.download_and_extract(urls_to_download)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"filepath": downloaded_files["train"], "split": "train"},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={
"filepath": downloaded_files["dev"], "split": "validation"},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"filepath": downloaded_files["test"], "split": "test"},
),
]
def _generate_examples(self, filepath, split):
"""Yields examples."""
logger.info("⏳ Generating examples from = %s", filepath)
with open(filepath, encoding="utf-8") as f:
guid = 0
tokens = []
ner_tags = []
for line in f:
if line == "" or line == "\n":
if tokens:
yield guid, {
"id": str(guid),
"tokens": tokens,
"ner_tags": ner_tags,
}
guid += 1
tokens = []
ner_tags = []
else:
splits = line.split(" ")
tokens.append(splits[0])
ner_tags.append(splits[1].rstrip())
# last example
yield guid, {
"id": str(guid),
"tokens": tokens,
"ner_tags": ner_tags,
}