Datasets:
Tasks:
Token Classification
Modalities:
Text
Sub-tasks:
named-entity-recognition
Languages:
Portuguese
Size:
10K - 100K
License:
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
""" | |
(pt) NERDE: NER na Defesa Econômica | |
(en) NERDE: NER on Economic Defense | |
""" | |
import datasets | |
logger = datasets.logging.get_logger(__name__) | |
#_CITATION = """""" | |
_DESCRIPTION = """ | |
(pt) NERDE é um dataset para NER a partir de documentos jurídicos da defesa econômica em português do Brasil, foi criado em colaboração com o Cade e o laboratório LATITUDE/UnB. | |
(en) NERDE is a NER dataset from economic defense legal documents in Brazilian Portuguese, created in collaboration with Cade and the LATITUDE/UnB laboratory. | |
""" | |
_HOMEPAGE = "https://github.com/guipaiva/NERDE" | |
_TRAINING_FILE = "train.conll" | |
_DEV_FILE = "dev.conll" | |
_TEST_FILE = "test.conll" | |
class NerdeDataset(datasets.GeneratorBasedBuilder): | |
VERSION = datasets.Version("1.0.0") | |
BUILDER_CONFIGS = [ | |
datasets.BuilderConfig(name="NERDE", version=VERSION, | |
description="Economic Defense NER dataset"), | |
] | |
def _info(self): | |
return datasets.DatasetInfo( | |
description=_DESCRIPTION, | |
features=datasets.Features( | |
{ | |
"id": datasets.Value("string"), | |
"tokens": datasets.Sequence(datasets.Value("string")), | |
"ner_tags": datasets.Sequence( | |
datasets.features.ClassLabel( | |
names=[ | |
"O", | |
"B-ORG", | |
"I-ORG", | |
"B-PER", | |
"I-PER", | |
"B-TEMPO", | |
"I-TEMPO", | |
"B-LOC", | |
"I-LOC", | |
"B-LEG", | |
"I-LEG", | |
"B-DOCS", | |
"I-DOCS", | |
"B-VALOR", | |
"I-VALOR" | |
] | |
) | |
), | |
} | |
), | |
supervised_keys=None, | |
homepage=_HOMEPAGE | |
) | |
def _split_generators(self, dl_manager): | |
"""Returns SplitGenerators.""" | |
urls_to_download = { | |
"train": _TRAINING_FILE, | |
"dev": _DEV_FILE, | |
"test": _TEST_FILE, | |
} | |
downloaded_files = dl_manager.download_and_extract(urls_to_download) | |
return [ | |
datasets.SplitGenerator( | |
name=datasets.Split.TRAIN, | |
gen_kwargs={ | |
"filepath": downloaded_files["train"], "split": "train"}, | |
), | |
datasets.SplitGenerator( | |
name=datasets.Split.VALIDATION, | |
gen_kwargs={ | |
"filepath": downloaded_files["dev"], "split": "validation"}, | |
), | |
datasets.SplitGenerator( | |
name=datasets.Split.TEST, | |
gen_kwargs={ | |
"filepath": downloaded_files["test"], "split": "test"}, | |
), | |
] | |
def _generate_examples(self, filepath, split): | |
"""Yields examples.""" | |
logger.info("⏳ Generating examples from = %s", filepath) | |
with open(filepath, encoding="utf-8") as f: | |
guid = 0 | |
tokens = [] | |
ner_tags = [] | |
for line in f: | |
if line == "" or line == "\n": | |
if tokens: | |
yield guid, { | |
"id": str(guid), | |
"tokens": tokens, | |
"ner_tags": ner_tags, | |
} | |
guid += 1 | |
tokens = [] | |
ner_tags = [] | |
else: | |
splits = line.split(" ") | |
tokens.append(splits[0]) | |
ner_tags.append(splits[1].rstrip()) | |
# last example | |
yield guid, { | |
"id": str(guid), | |
"tokens": tokens, | |
"ner_tags": ner_tags, | |
} | |