File size: 37,835 Bytes
daccf71 8204c34 daccf71 8204c34 daccf71 8204c34 daccf71 8204c34 daccf71 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 |
{
"cells": [
{
"cell_type": "code",
"execution_count": 32,
"id": "578786b8-092a-4de8-9955-4e87da557639",
"metadata": {
"scrolled": true
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Requirement already satisfied: peft in /opt/conda/lib/python3.10/site-packages (0.11.1)\n",
"Requirement already satisfied: numpy>=1.17 in /opt/conda/lib/python3.10/site-packages (from peft) (1.26.3)\n",
"Requirement already satisfied: packaging>=20.0 in /opt/conda/lib/python3.10/site-packages (from peft) (23.1)\n",
"Requirement already satisfied: psutil in /opt/conda/lib/python3.10/site-packages (from peft) (5.9.0)\n",
"Requirement already satisfied: pyyaml in /opt/conda/lib/python3.10/site-packages (from peft) (6.0.1)\n",
"Requirement already satisfied: torch>=1.13.0 in /opt/conda/lib/python3.10/site-packages (from peft) (2.2.0)\n",
"Requirement already satisfied: transformers in /opt/conda/lib/python3.10/site-packages (from peft) (4.42.3)\n",
"Requirement already satisfied: tqdm in /opt/conda/lib/python3.10/site-packages (from peft) (4.66.4)\n",
"Requirement already satisfied: accelerate>=0.21.0 in /opt/conda/lib/python3.10/site-packages (from peft) (0.32.0)\n",
"Requirement already satisfied: safetensors in /opt/conda/lib/python3.10/site-packages (from peft) (0.4.3)\n",
"Requirement already satisfied: huggingface-hub>=0.17.0 in /opt/conda/lib/python3.10/site-packages (from peft) (0.23.4)\n",
"Requirement already satisfied: filelock in /opt/conda/lib/python3.10/site-packages (from huggingface-hub>=0.17.0->peft) (3.13.1)\n",
"Requirement already satisfied: fsspec>=2023.5.0 in /opt/conda/lib/python3.10/site-packages (from huggingface-hub>=0.17.0->peft) (2023.12.2)\n",
"Requirement already satisfied: requests in /opt/conda/lib/python3.10/site-packages (from huggingface-hub>=0.17.0->peft) (2.32.3)\n",
"Requirement already satisfied: typing-extensions>=3.7.4.3 in /opt/conda/lib/python3.10/site-packages (from huggingface-hub>=0.17.0->peft) (4.9.0)\n",
"Requirement already satisfied: sympy in /opt/conda/lib/python3.10/site-packages (from torch>=1.13.0->peft) (1.12)\n",
"Requirement already satisfied: networkx in /opt/conda/lib/python3.10/site-packages (from torch>=1.13.0->peft) (3.1)\n",
"Requirement already satisfied: jinja2 in /opt/conda/lib/python3.10/site-packages (from torch>=1.13.0->peft) (3.1.2)\n",
"Requirement already satisfied: regex!=2019.12.17 in /opt/conda/lib/python3.10/site-packages (from transformers->peft) (2024.5.15)\n",
"Requirement already satisfied: tokenizers<0.20,>=0.19 in /opt/conda/lib/python3.10/site-packages (from transformers->peft) (0.19.1)\n",
"Requirement already satisfied: MarkupSafe>=2.0 in /opt/conda/lib/python3.10/site-packages (from jinja2->torch>=1.13.0->peft) (2.1.3)\n",
"Requirement already satisfied: charset-normalizer<4,>=2 in /opt/conda/lib/python3.10/site-packages (from requests->huggingface-hub>=0.17.0->peft) (2.0.4)\n",
"Requirement already satisfied: idna<4,>=2.5 in /opt/conda/lib/python3.10/site-packages (from requests->huggingface-hub>=0.17.0->peft) (3.4)\n",
"Requirement already satisfied: urllib3<3,>=1.21.1 in /opt/conda/lib/python3.10/site-packages (from requests->huggingface-hub>=0.17.0->peft) (1.26.18)\n",
"Requirement already satisfied: certifi>=2017.4.17 in /opt/conda/lib/python3.10/site-packages (from requests->huggingface-hub>=0.17.0->peft) (2023.11.17)\n",
"Requirement already satisfied: mpmath>=0.19 in /opt/conda/lib/python3.10/site-packages (from sympy->torch>=1.13.0->peft) (1.3.0)\n",
"\u001b[33mWARNING: Running pip as the 'root' user can result in broken permissions and conflicting behaviour with the system package manager. It is recommended to use a virtual environment instead: https://pip.pypa.io/warnings/venv\u001b[0m\u001b[33m\n",
"\u001b[0m"
]
}
],
"source": [
"#!pip install huggingface_hub torch transformers datasets trl \n",
"#!pip install flash-attn --no-build-isolation\n",
"!pip install --upgrade peft"
]
},
{
"cell_type": "code",
"execution_count": 35,
"id": "4a74bec4-4bf0-47be-802a-046073da573e",
"metadata": {},
"outputs": [],
"source": [
"import sys\n",
"import logging\n",
"\n",
"import datasets\n",
"from datasets import load_dataset\n",
"from peft import LoraConfig\n",
"import torch\n",
"import torch.nn as nn\n",
"import transformers\n",
"from trl import SFTTrainer, SFTConfig\n",
"from transformers import AutoModelForCausalLM, AutoTokenizer, TrainingArguments, BitsAndBytesConfig"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "d2e94000-8097-4f09-a8dc-506801bb9f12",
"metadata": {},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "8c9a7b9e2bb5463c979a2659118c4912",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"VBox(children=(HTML(value='<center> <img\\nsrc=https://huggingface.co/front/assets/huggingface_logo-noborder.svβ¦"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"from huggingface_hub import HfApi, notebook_login\n",
"\n",
"notebook_login()"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "8b994f91-1973-405d-8275-07948eadab99",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"CommitInfo(commit_url='https://huggingface.co/datasets/Granther/assorted-notebooks-bin/commit/daccf7107bc7eac6717dea879fde2ba3a51cccf4', commit_message='Upload sft_phi3_2.ipynb with huggingface_hub', commit_description='', oid='daccf7107bc7eac6717dea879fde2ba3a51cccf4', pr_url=None, pr_revision=None, pr_num=None)"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"api = HfApi()\n",
"\n",
"quant_repo = \"Granther/assorted-notebooks-bin\"\n",
"\n",
"api.upload_file(\n",
" path_or_fileobj=\"sft_phi3_2.ipynb\",\n",
" path_in_repo=\"sft_phi3_2.ipynb\",\n",
" repo_id=quant_repo,\n",
" repo_type=\"dataset\",\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "8a9bc6f8-4a1e-42d8-897d-5225e1b5011a",
"metadata": {},
"outputs": [],
"source": [
"dataset_id = (\"wikitext\", \"wikitext-103-raw-v1\")\n",
"dataset_id = \"HuggingFaceH4/ultrachat_200k\"\n",
"\n",
"dataset = load_dataset(dataset_id)"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "f3b226eb-b159-4533-bd33-2746181a80b3",
"metadata": {},
"outputs": [],
"source": [
"training_config = {\n",
" \"bf16\": True,\n",
" \"do_eval\": False,\n",
" \"do_train\": True, # defualts to False, not sure where this fits\n",
" \"learning_rate\": 5.0e-06,\n",
" \"log_level\": \"info\",\n",
" \"logging_steps\": 20,\n",
" \"logging_strategy\": \"steps\",\n",
" \"lr_scheduler_type\": \"cosine\",\n",
" \"num_train_epochs\": 1,\n",
" \"max_steps\": -1,\n",
" \"output_dir\": \"./checkpoint_dir\", # model predictions and checkpoints\n",
" \"overwrite_output_dir\": True,\n",
" \"per_device_eval_batch_size\": 4,\n",
" \"per_device_train_batch_size\": 4,\n",
" \"remove_unused_columns\": True,\n",
" \"save_steps\": 100,\n",
" \"save_total_limit\": 1,\n",
" \"seed\": 0,\n",
" \"gradient_checkpointing\": True,\n",
" \"gradient_checkpointing_kwargs\":{\"use_reentrant\": False},\n",
" \"gradient_accumulation_steps\": 1, # number of steps to accumulate before beckprop\n",
" \"warmup_ratio\": 0.2,\n",
" \"packing\": False,\n",
" \"max_seq_length\": 2048,\n",
" \"dataset_text_field\": \"text\",\n",
" }\n",
"\n",
"peft_config = {\n",
" \"r\": 16, # default values VV\n",
" \"lora_alpha\": 32,\n",
" \"lora_dropout\": 0.05,\n",
" \"bias\": \"none\",\n",
" \"task_type\": \"CAUSAL_LM\",\n",
" \"target_modules\": \"all-linear\",\n",
" \"modules_to_save\": None,\n",
"}\n",
"\n",
"train_conf = SFTConfig(**training_config)\n",
"#train_conf = TrainingArguments(**training_config)\n",
"peft_conf = LoraConfig(**peft_config)"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "20c9d834-50fe-4495-b003-7d80495c8439",
"metadata": {
"scrolled": true
},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "35f0c3abec7c4220b2cbd89ecc0671c0",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Loading checkpoint shards: 0%| | 0/2 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained.\n"
]
}
],
"source": [
"checkpoint_path = \"microsoft/Phi-3-mini-128k-instruct\"\n",
"model_kwargs = dict(\n",
" use_cache=False,\n",
" trust_remote_code=True,\n",
" attn_implementation=\"flash_attention_2\", # loading the model with flash-attenstion support\n",
" torch_dtype=torch.bfloat16,\n",
" device_map=\"auto\"\n",
")\n",
"\n",
"model = AutoModelForCausalLM.from_pretrained(checkpoint_path, **model_kwargs)\n",
"tokenizer = AutoTokenizer.from_pretrained(checkpoint_path, truncation=True)"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "d684252c-2151-4601-8ebb-398bd3a63f00",
"metadata": {},
"outputs": [],
"source": [
"tokenizer.model_max_length = 2048\n",
"#tokenizer.pad_token = tokenizer.unk_token # use unk rather than eos token to prevent endless generation\n",
"#tokenizer.pad_token_id = tokenizer.convert_tokens_to_ids(tokenizer.pad_token)\n",
"tokenizer.padding_side = 'right'"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "75869100-99f7-49c7-a9d3-7a3950dd7d72",
"metadata": {
"scrolled": true
},
"outputs": [],
"source": [
"def preproc(examples, tokenizer):\n",
" messages = examples['messages']\n",
" examples['text'] = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=False) #, return_dict=True)\n",
" return examples\n",
"\n",
"train_dataset = dataset['train_sft']\n",
"test_dataset = dataset['test_sft']\n",
"\n",
"train_dataset = train_dataset.map(preproc,\n",
" fn_kwargs={'tokenizer':tokenizer},\n",
" num_proc=24,\n",
" #batched=True,\n",
" remove_columns=list(train_dataset.features)).select(range(1000))\n",
"\n",
"test_dataset = test_dataset.map(preproc,\n",
" fn_kwargs={'tokenizer':tokenizer},\n",
" num_proc=24,\n",
" #batched=True,\n",
" remove_columns=list(test_dataset.features))#[10000:]"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "56cd1b31-6f7e-4c7d-8524-b12cf94b9c9f",
"metadata": {},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "5d79f04152484f9494e389b264fc7176",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Map: 0%| | 0/1000 [00:00<?, ? examples/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"Using auto half precision backend\n"
]
}
],
"source": [
"trainer = SFTTrainer(\n",
" model=model,\n",
" args=train_conf,\n",
" peft_config=peft_conf,\n",
" train_dataset=train_dataset,\n",
" #eval_dataset=test_dataset,\n",
" # max_seq_length=tokenizer.model_max_length,\n",
" # dataset_text_field=\"text\",\n",
" tokenizer=tokenizer,\n",
" # packing=True\n",
")"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "d8e6b669-1717-429a-9c43-3c02adb8a3d1",
"metadata": {},
"outputs": [],
"source": [
"train_result = trainer.train()\n",
"metrics = train_result.metrics\n",
"trainer.save_state()"
]
},
{
"cell_type": "code",
"execution_count": 12,
"id": "4d4207fc-1578-4591-a480-467fd2a5855b",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{'train_runtime': 506.2204,\n",
" 'train_samples_per_second': 1.975,\n",
" 'train_steps_per_second': 0.494,\n",
" 'total_flos': 4.041582948790272e+16,\n",
" 'train_loss': 1.1037534561157227,\n",
" 'epoch': 1.0}"
]
},
"execution_count": 12,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"metrics"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "f92339ec-0448-40d2-9458-6242e35b9bdc",
"metadata": {},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "575ddc622079468cb4ca994ed76dc2f4",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Loading checkpoint shards: 0%| | 0/2 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"from peft import PeftConfig, PeftModel \n",
"\n",
"checkpoint_path = \"microsoft/Phi-3-mini-128k-instruct\"\n",
"adapter_path = \"./checkpoint_dir/checkpoint-250\"\n",
"\n",
"model_kwargs = dict(\n",
" use_cache=False,\n",
" trust_remote_code=True,\n",
" attn_implementation=\"flash_attention_2\", # loading the model with flash-attenstion support\n",
" torch_dtype=torch.bfloat16,\n",
" device_map=\"auto\"\n",
")\n",
"\n",
"model = AutoModelForCausalLM.from_pretrained(checkpoint_path, **model_kwargs)"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "f0cf458d-8b4f-4ff9-bd60-bbe510416cea",
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained.\n"
]
}
],
"source": [
"model = PeftModel.from_pretrained(model, adapter_path)\n",
"tokenizer = AutoTokenizer.from_pretrained(checkpoint_path)"
]
},
{
"cell_type": "code",
"execution_count": 83,
"id": "8e0b4443-cc10-47ca-a476-055fd915c1b9",
"metadata": {},
"outputs": [],
"source": [
"cats = None\n",
"kittens = None\n",
"paris = None"
]
},
{
"cell_type": "code",
"execution_count": 88,
"id": "b5ada882-b7d2-46c5-ba5b-54fab2556832",
"metadata": {},
"outputs": [],
"source": [
"input_text = [\n",
" {'role': 'user', 'content': \"Cats are\"},\n",
" #{'role': 'system', 'content': \"I'm going \"}\n",
"]\n",
"\n",
"input = \"Tell me about paris\"\n",
"\n",
"input = tokenizer(input, return_tensors='pt')\n",
"\n",
"def generate_out(input, len=100):\n",
" return model.generate(\n",
" input['input_ids'].to('cuda'),\n",
" max_length=len, # Maximum length of the generated text\n",
" num_return_sequences=1, # Number of sequences to generate\n",
" )\n",
"output = generate_out(input)[0].to(torch.float32)\n",
"\n",
"paris = output\n",
"\n",
"#loss(output, output)\n",
"#input = tokenizer.apply_chat_template(input_text, tokenize=False, add_generation_prompt=False)\n"
]
},
{
"cell_type": "code",
"execution_count": 92,
"id": "8f39d54c-7ec8-4e1a-9db3-83157eae8f7d",
"metadata": {},
"outputs": [
{
"ename": "TypeError",
"evalue": "loop of ufunc does not support argument 0 of type builtin_function_or_method which has no callable exp method",
"output_type": "error",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[0;31mAttributeError\u001b[0m Traceback (most recent call last)",
"\u001b[0;31mAttributeError\u001b[0m: 'builtin_function_or_method' object has no attribute 'exp'",
"\nThe above exception was the direct cause of the following exception:\n",
"\u001b[0;31mTypeError\u001b[0m Traceback (most recent call last)",
"Cell \u001b[0;32mIn[92], line 3\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[38;5;28;01mimport\u001b[39;00m \u001b[38;5;21;01mnumpy\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m \u001b[38;5;21;01mnp\u001b[39;00m\n\u001b[0;32m----> 3\u001b[0m \u001b[43mnp\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mexp\u001b[49m\u001b[43m(\u001b[49m\u001b[43mloss\u001b[49m\u001b[43m(\u001b[49m\u001b[43mcats\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mparis\u001b[49m\u001b[43m)\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mitem\u001b[49m\u001b[43m)\u001b[49m\n",
"\u001b[0;31mTypeError\u001b[0m: loop of ufunc does not support argument 0 of type builtin_function_or_method which has no callable exp method"
]
}
],
"source": [
"import numpy as np\n",
"\n",
"np.exp(loss(cats, paris).item)"
]
},
{
"cell_type": "code",
"execution_count": 68,
"id": "d440d74d-2b5d-48e0-ad86-f355a25a6c16",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"tensor([ 274, 1446, 526, 451, 278, 871, 15006, 393, 508, 367,\n",
" 15201, 491, 445, 4195, 29889, 360, 12099, 29892, 27127, 1169,\n",
" 29892, 322, 1584, 17952, 508, 884, 8812, 515, 445, 17135,\n",
" 29889, 13, 13, 1576, 25828, 4835, 310, 285, 5570, 454,\n",
" 2679, 29747, 24424, 297, 20309, 508, 13100, 8679, 373, 278,\n",
" 7408, 310, 278, 17135, 29889, 512, 278, 4688, 22950, 29892,\n",
" 274, 1446, 1122, 1510, 694, 18906, 310, 4486, 2264, 29889,\n",
" 2398, 29892, 408, 278, 17135, 6728, 267, 29892, 896, 1122,\n",
" 4953, 454, 386, 1191, 293, 29892, 14074, 1009, 623, 300,\n",
" 568, 29892, 322, 2693, 2381, 324, 2435, 301, 962, 561],\n",
" device='cuda:0')"
]
},
"execution_count": 68,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"output[0]"
]
},
{
"cell_type": "code",
"execution_count": 75,
"id": "8f557898-32bb-4cc9-b9de-cb80bb4ee21e",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"tensor([4, 3, 0])"
]
},
"execution_count": 75,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"x = torch.tensor([123], dtype=torch.long)\n",
"\n",
"#loss(x,x)\n",
"\n",
"input = torch.randn(3, 5, requires_grad=True)\n",
"target = torch.empty(3, dtype=torch.long).random_(5)\n",
"\n",
"target"
]
},
{
"cell_type": "code",
"execution_count": 59,
"id": "139e9973-003a-484f-95f8-42428dd436f5",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"cats are not the only animals that can be affected by this condition. Dogs, rabbits, and even birds can also suffer from this disease.\n",
"\n",
"The symptoms of feline leukemia virus infection can vary depending on the stage of the disease. In the early stages, cats may show no signs of illness. However, as the disease progresses, they may become lethargic, lose their appetite, and develop swollen lymph\n"
]
}
],
"source": [
"generated_text = tokenizer.decode(output[0], skip_special_tokens=True)\n",
"\n",
"print(generated_text)"
]
},
{
"cell_type": "code",
"execution_count": 54,
"id": "cda57a53-98f7-45eb-84c1-9ef8360926a4",
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"Attempting to cast a BatchEncoding to type torch.float16. This is not supported.\n",
"Attempting to cast a BatchEncoding to type torch.float16. This is not supported.\n"
]
},
{
"ename": "RuntimeError",
"evalue": "Expected floating point type for target with class probabilities, got Long",
"output_type": "error",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[0;31mRuntimeError\u001b[0m Traceback (most recent call last)",
"Cell \u001b[0;32mIn[54], line 6\u001b[0m\n\u001b[1;32m 3\u001b[0m i \u001b[38;5;241m=\u001b[39m tokenizer(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mHello\u001b[39m\u001b[38;5;124m\"\u001b[39m, return_tensors\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mpt\u001b[39m\u001b[38;5;124m'\u001b[39m)\u001b[38;5;241m.\u001b[39mto(torch\u001b[38;5;241m.\u001b[39mfloat16)\n\u001b[1;32m 4\u001b[0m lab \u001b[38;5;241m=\u001b[39m tokenizer(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mHella\u001b[39m\u001b[38;5;124m\"\u001b[39m, return_tensors\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mpt\u001b[39m\u001b[38;5;124m'\u001b[39m)\u001b[38;5;241m.\u001b[39mto(torch\u001b[38;5;241m.\u001b[39mfloat16)\n\u001b[0;32m----> 6\u001b[0m \u001b[43mloss\u001b[49m\u001b[43m(\u001b[49m\u001b[43mgenerate_out\u001b[49m\u001b[43m(\u001b[49m\u001b[43mi\u001b[49m\u001b[43m,\u001b[49m\u001b[38;5;28;43mlen\u001b[39;49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;241;43m10\u001b[39;49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mgenerate_out\u001b[49m\u001b[43m(\u001b[49m\u001b[43mlab\u001b[49m\u001b[43m,\u001b[49m\u001b[38;5;28;43mlen\u001b[39;49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;241;43m10\u001b[39;49m\u001b[43m)\u001b[49m\u001b[43m)\u001b[49m\n",
"File \u001b[0;32m/opt/conda/lib/python3.10/site-packages/torch/nn/modules/module.py:1511\u001b[0m, in \u001b[0;36mModule._wrapped_call_impl\u001b[0;34m(self, *args, **kwargs)\u001b[0m\n\u001b[1;32m 1509\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_compiled_call_impl(\u001b[38;5;241m*\u001b[39margs, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs) \u001b[38;5;66;03m# type: ignore[misc]\u001b[39;00m\n\u001b[1;32m 1510\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[0;32m-> 1511\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_call_impl\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n",
"File \u001b[0;32m/opt/conda/lib/python3.10/site-packages/torch/nn/modules/module.py:1520\u001b[0m, in \u001b[0;36mModule._call_impl\u001b[0;34m(self, *args, **kwargs)\u001b[0m\n\u001b[1;32m 1515\u001b[0m \u001b[38;5;66;03m# If we don't have any hooks, we want to skip the rest of the logic in\u001b[39;00m\n\u001b[1;32m 1516\u001b[0m \u001b[38;5;66;03m# this function, and just call forward.\u001b[39;00m\n\u001b[1;32m 1517\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m (\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_backward_hooks \u001b[38;5;129;01mor\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_backward_pre_hooks \u001b[38;5;129;01mor\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_forward_hooks \u001b[38;5;129;01mor\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_forward_pre_hooks\n\u001b[1;32m 1518\u001b[0m \u001b[38;5;129;01mor\u001b[39;00m _global_backward_pre_hooks \u001b[38;5;129;01mor\u001b[39;00m _global_backward_hooks\n\u001b[1;32m 1519\u001b[0m \u001b[38;5;129;01mor\u001b[39;00m _global_forward_hooks \u001b[38;5;129;01mor\u001b[39;00m _global_forward_pre_hooks):\n\u001b[0;32m-> 1520\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mforward_call\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 1522\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[1;32m 1523\u001b[0m result \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m\n",
"File \u001b[0;32m/opt/conda/lib/python3.10/site-packages/torch/nn/modules/loss.py:1179\u001b[0m, in \u001b[0;36mCrossEntropyLoss.forward\u001b[0;34m(self, input, target)\u001b[0m\n\u001b[1;32m 1178\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mforward\u001b[39m(\u001b[38;5;28mself\u001b[39m, \u001b[38;5;28minput\u001b[39m: Tensor, target: Tensor) \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m>\u001b[39m Tensor:\n\u001b[0;32m-> 1179\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mF\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mcross_entropy\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;28;43minput\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mtarget\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mweight\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mweight\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1180\u001b[0m \u001b[43m \u001b[49m\u001b[43mignore_index\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mignore_index\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mreduction\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mreduction\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1181\u001b[0m \u001b[43m \u001b[49m\u001b[43mlabel_smoothing\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mlabel_smoothing\u001b[49m\u001b[43m)\u001b[49m\n",
"File \u001b[0;32m/opt/conda/lib/python3.10/site-packages/torch/nn/functional.py:3059\u001b[0m, in \u001b[0;36mcross_entropy\u001b[0;34m(input, target, weight, size_average, ignore_index, reduce, reduction, label_smoothing)\u001b[0m\n\u001b[1;32m 3057\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m size_average \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m \u001b[38;5;129;01mor\u001b[39;00m reduce \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[1;32m 3058\u001b[0m reduction \u001b[38;5;241m=\u001b[39m _Reduction\u001b[38;5;241m.\u001b[39mlegacy_get_string(size_average, reduce)\n\u001b[0;32m-> 3059\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mtorch\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_C\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_nn\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mcross_entropy_loss\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;28;43minput\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mtarget\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mweight\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43m_Reduction\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mget_enum\u001b[49m\u001b[43m(\u001b[49m\u001b[43mreduction\u001b[49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mignore_index\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mlabel_smoothing\u001b[49m\u001b[43m)\u001b[49m\n",
"\u001b[0;31mRuntimeError\u001b[0m: Expected floating point type for target with class probabilities, got Long"
]
}
],
"source": [
"loss = nn.CrossEntropyLoss()\n",
"\n",
"i = tokenizer(\"Hello\", return_tensors='pt').to(torch.float16)\n",
"lab = tokenizer(\"Hella\", return_tensors='pt').to(torch.float16\n",
"\n",
"loss(generate_out(i,len=10), generate_out(lab,len=10))\n",
"\n",
"#loss(i, lab)\n",
"\n",
" "
]
},
{
"cell_type": "markdown",
"id": "f99adf3c-aefb-4c22-a8b1-e8f79ef0b9d8",
"metadata": {},
"source": [
"### Test perplexity using MMLU"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "287155f7-6808-4419-9b12-8756e1746e28",
"metadata": {},
"outputs": [],
"source": [
"prompt = \"When a diver points a flashlight upward toward the surface of the water at an angle 20Β° from the normal, the beam of light\"\n",
"subject = \"conceptual_physics\"\n",
"answer = \"passes into the air above\"\n",
"\n",
"input_text = []\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "7bdb1138-7da5-44dc-9549-df7d40ec68e1",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"2024-07-04:16:55:06,590 INFO [__main__.py:272] Verbosity set to INFO\n",
"2024-07-04:16:55:11,201 INFO [__main__.py:369] Selected Tasks: ['hellaswag']\n",
"2024-07-04:16:55:11,202 INFO [evaluator.py:152] Setting random seed to 0 | Setting numpy seed to 1234 | Setting torch manual seed to 1234\n",
"2024-07-04:16:55:11,202 INFO [evaluator.py:189] Initializing hf model, with arguments: {'pretrained': 'EleutherAI/gpt-j-6B'}\n",
"2024-07-04:16:55:11,241 INFO [huggingface.py:170] Using device 'cuda:0'\n",
"Downloading builder script: 100%|ββββββββββ| 4.36k/4.36k [00:00<00:00, 19.3MB/s]\n",
"Downloading metadata: 100%|ββββββββββββββββ| 2.53k/2.53k [00:00<00:00, 17.6MB/s]\n",
"Downloading readme: 100%|ββββββββββββββββββ| 6.84k/6.84k [00:00<00:00, 24.9MB/s]\n",
"Downloading data: 47.5MB [00:00, 137MB/s] \n",
"Downloading data: 11.8MB [00:00, 92.0MB/s] \n",
"Downloading data: 12.2MB [00:00, 93.1MB/s] \n",
"Generating train split: 100%|βββ| 39905/39905 [00:02<00:00, 17573.67 examples/s]\n",
"Generating test split: 100%|ββββ| 10003/10003 [00:00<00:00, 17738.73 examples/s]\n",
"Generating validation split: 100%|β| 10042/10042 [00:00<00:00, 17489.21 examples\n",
"Map: 100%|ββββββββββββββββββββββ| 39905/39905 [00:03<00:00, 10310.72 examples/s]\n",
"Map: 100%|βββββββββββββββββββββββ| 10042/10042 [00:01<00:00, 9523.34 examples/s]\n",
"2024-07-04:16:56:20,566 INFO [evaluator.py:261] Setting fewshot random generator seed to 1234\n",
"2024-07-04:16:56:20,567 INFO [task.py:411] Building contexts for hellaswag on rank 0...\n",
"100%|βββββββββββββββββββββββββββββββββββ| 10042/10042 [00:02<00:00, 3806.50it/s]\n",
"2024-07-04:16:56:23,924 INFO [evaluator.py:438] Running loglikelihood requests\n",
"Running loglikelihood requests: 0%| | 0/40168 [00:00<?, ?it/s]Traceback (most recent call last):\n",
" File \"/opt/conda/bin/lm_eval\", line 8, in <module>\n",
" sys.exit(cli_evaluate())\n",
" File \"/lm-evaluation-harness/lm_eval/__main__.py\", line 375, in cli_evaluate\n",
" results = evaluator.simple_evaluate(\n",
" File \"/lm-evaluation-harness/lm_eval/utils.py\", line 395, in _wrapper\n",
" return fn(*args, **kwargs)\n",
" File \"/lm-evaluation-harness/lm_eval/evaluator.py\", line 277, in simple_evaluate\n",
" results = evaluate(\n",
" File \"/lm-evaluation-harness/lm_eval/utils.py\", line 395, in _wrapper\n",
" return fn(*args, **kwargs)\n",
" File \"/lm-evaluation-harness/lm_eval/evaluator.py\", line 449, in evaluate\n",
" resps = getattr(lm, reqtype)(cloned_reqs)\n",
" File \"/lm-evaluation-harness/lm_eval/api/model.py\", line 371, in loglikelihood\n",
" return self._loglikelihood_tokens(new_reqs, disable_tqdm=disable_tqdm)\n",
" File \"/lm-evaluation-harness/lm_eval/models/huggingface.py\", line 1086, in _loglikelihood_tokens\n",
" self._model_call(batched_inps, **call_kwargs), dim=-1\n",
" File \"/lm-evaluation-harness/lm_eval/models/huggingface.py\", line 801, in _model_call\n",
" return self.model(inps).logits\n",
" File \"/opt/conda/lib/python3.10/site-packages/torch/nn/modules/module.py\", line 1511, in _wrapped_call_impl\n",
" return self._call_impl(*args, **kwargs)\n",
" File \"/opt/conda/lib/python3.10/site-packages/torch/nn/modules/module.py\", line 1520, in _call_impl\n",
" return forward_call(*args, **kwargs)\n",
" File \"/opt/conda/lib/python3.10/site-packages/transformers/models/gptj/modeling_gptj.py\", line 1124, in forward\n",
" transformer_outputs = self.transformer(\n",
" File \"/opt/conda/lib/python3.10/site-packages/torch/nn/modules/module.py\", line 1511, in _wrapped_call_impl\n",
" return self._call_impl(*args, **kwargs)\n",
" File \"/opt/conda/lib/python3.10/site-packages/torch/nn/modules/module.py\", line 1520, in _call_impl\n",
" return forward_call(*args, **kwargs)\n",
" File \"/opt/conda/lib/python3.10/site-packages/transformers/models/gptj/modeling_gptj.py\", line 950, in forward\n",
" outputs = block(\n",
" File \"/opt/conda/lib/python3.10/site-packages/torch/nn/modules/module.py\", line 1511, in _wrapped_call_impl\n",
" return self._call_impl(*args, **kwargs)\n",
" File \"/opt/conda/lib/python3.10/site-packages/torch/nn/modules/module.py\", line 1520, in _call_impl\n",
" return forward_call(*args, **kwargs)\n",
" File \"/opt/conda/lib/python3.10/site-packages/transformers/models/gptj/modeling_gptj.py\", line 590, in forward\n",
" feed_forward_hidden_states = self.mlp(hidden_states)\n",
" File \"/opt/conda/lib/python3.10/site-packages/torch/nn/modules/module.py\", line 1511, in _wrapped_call_impl\n",
" return self._call_impl(*args, **kwargs)\n",
" File \"/opt/conda/lib/python3.10/site-packages/torch/nn/modules/module.py\", line 1520, in _call_impl\n",
" return forward_call(*args, **kwargs)\n",
" File \"/opt/conda/lib/python3.10/site-packages/transformers/models/gptj/modeling_gptj.py\", line 552, in forward\n",
" hidden_states = self.act(hidden_states)\n",
" File \"/opt/conda/lib/python3.10/site-packages/torch/nn/modules/module.py\", line 1511, in _wrapped_call_impl\n",
" return self._call_impl(*args, **kwargs)\n",
" File \"/opt/conda/lib/python3.10/site-packages/torch/nn/modules/module.py\", line 1520, in _call_impl\n",
" return forward_call(*args, **kwargs)\n",
" File \"/opt/conda/lib/python3.10/site-packages/transformers/activations.py\", line 56, in forward\n",
" return 0.5 * input * (1.0 + torch.tanh(math.sqrt(2.0 / math.pi) * (input + 0.044715 * torch.pow(input, 3.0))))\n",
"torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 76.00 MiB. GPU 0 has a total capacity of 23.65 GiB of which 27.81 MiB is free. Process 1711577 has 23.62 GiB memory in use. Of the allocated memory 23.07 GiB is allocated by PyTorch, and 103.80 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)\n",
"Running loglikelihood requests: 0%| | 0/40168 [00:00<?, ?it/s]\n"
]
}
],
"source": [
"!lm_eval --model hf \\\n",
" --model_args pretrained=EleutherAI/gpt-j-6B \\\n",
" --tasks hellaswag \\\n",
" --device cuda:0 \\\n",
" --batch_size 8"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "a9e753f6-4272-4305-bbfc-2eceeb5c4532",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.13"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
|