Upload 5 files
Browse files- ft.py +184 -0
- ft_hus.py +192 -0
- ft_instruct.py +208 -0
- ft_news.py +213 -0
- ft_skib.py +223 -0
ft.py
ADDED
@@ -0,0 +1,184 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, DataCollatorForLanguageModeling, get_scheduler
|
2 |
+
from huggingface_hub import HfApi, notebook_login
|
3 |
+
from datasets import load_dataset
|
4 |
+
from peft import LoraConfig, LoraModel, get_peft_model
|
5 |
+
from timm.scheduler import CosineLRScheduler
|
6 |
+
import wandb
|
7 |
+
import os
|
8 |
+
from accelerate import Accelerator
|
9 |
+
import numpy as np
|
10 |
+
import torch
|
11 |
+
import tqdm
|
12 |
+
import torch.nn as nn
|
13 |
+
import torch.optim as optim
|
14 |
+
|
15 |
+
acc = Accelerator()
|
16 |
+
|
17 |
+
lora_conf = LoraConfig(
|
18 |
+
r=8,
|
19 |
+
lora_alpha=64,
|
20 |
+
lora_dropout=0.1,
|
21 |
+
bias="none",
|
22 |
+
task_type="CAUSAL_LM",
|
23 |
+
target_modules="all-linear",
|
24 |
+
modules_to_save=None,
|
25 |
+
)
|
26 |
+
|
27 |
+
model_id = "TinyLlama/TinyLlama-1.1B-Chat-v1.0"
|
28 |
+
dataset_id = "microsoft/orca-math-word-problems-200k"
|
29 |
+
|
30 |
+
model_kwargs = dict(
|
31 |
+
use_cache=False,
|
32 |
+
attn_implementation="flash_attention_2",
|
33 |
+
torch_dtype=torch.bfloat16,
|
34 |
+
device_map="sequential",
|
35 |
+
)
|
36 |
+
|
37 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
38 |
+
model = AutoModelForCausalLM.from_pretrained(model_id, **model_kwargs)
|
39 |
+
model = get_peft_model(model, lora_conf)
|
40 |
+
|
41 |
+
def count_trainable_parameters(model):
|
42 |
+
model_parameters = filter(lambda p: p.requires_grad, model.parameters())
|
43 |
+
params = sum([np.prod(p.size()) for p in model_parameters])
|
44 |
+
return params
|
45 |
+
|
46 |
+
trainable_params = format(count_trainable_parameters(model), ",")
|
47 |
+
|
48 |
+
epochs = 1
|
49 |
+
per_dev_batch_size = 2
|
50 |
+
gradient_accumulation_steps = 4
|
51 |
+
dtype = torch.bfloat16
|
52 |
+
learning_rate = 1e-5
|
53 |
+
|
54 |
+
raw_dataset = load_dataset(dataset_id, split="train")
|
55 |
+
|
56 |
+
def apply_chat_template(example, tokenizer):
|
57 |
+
chat = [
|
58 |
+
{"role": "user", "content": example["question"]},
|
59 |
+
{"role": "assistant", "content": example["answer"]},
|
60 |
+
]
|
61 |
+
example['text'] = tokenizer.apply_chat_template(chat, add_generation_prompt=False, tokenize=True)
|
62 |
+
return example
|
63 |
+
|
64 |
+
train_dataset = raw_dataset.select(range(150000))
|
65 |
+
test_dataset = raw_dataset.select(range(300))
|
66 |
+
column_names = list(train_dataset.features)
|
67 |
+
|
68 |
+
processed_train_dataset = train_dataset.map(
|
69 |
+
apply_chat_template,
|
70 |
+
# batched=True,
|
71 |
+
# batch_size=20,
|
72 |
+
fn_kwargs={"tokenizer": tokenizer},
|
73 |
+
num_proc=10,
|
74 |
+
remove_columns=column_names,
|
75 |
+
desc="Applying chat template to train_sft",
|
76 |
+
)
|
77 |
+
|
78 |
+
processed_test_dataset = test_dataset.map(
|
79 |
+
apply_chat_template,
|
80 |
+
# batched=True,
|
81 |
+
# batch_size=20,
|
82 |
+
fn_kwargs={"tokenizer": tokenizer},
|
83 |
+
num_proc=10,
|
84 |
+
remove_columns=column_names,
|
85 |
+
desc="Applying chat template to test_sft",
|
86 |
+
)
|
87 |
+
|
88 |
+
data_collator = DataCollatorForLanguageModeling(tokenizer=tokenizer, mlm=False)
|
89 |
+
|
90 |
+
train_dataloader = torch.utils.data.DataLoader( #
|
91 |
+
processed_train_dataset['text'],
|
92 |
+
batch_size=per_dev_batch_size,
|
93 |
+
shuffle=True,
|
94 |
+
collate_fn=data_collator
|
95 |
+
)
|
96 |
+
|
97 |
+
test_dataloader = torch.utils.data.DataLoader(
|
98 |
+
processed_test_dataset['text'],
|
99 |
+
batch_size=per_dev_batch_size,
|
100 |
+
shuffle=True,
|
101 |
+
collate_fn=data_collator
|
102 |
+
)
|
103 |
+
|
104 |
+
global_step = 0
|
105 |
+
num_training_steps = epochs * len(train_dataloader)
|
106 |
+
#num_training_steps = 20000
|
107 |
+
warmup_ratio = 0.1
|
108 |
+
warmup_steps = int(warmup_ratio * num_training_steps)
|
109 |
+
|
110 |
+
optimizer = optim.AdamW(model.parameters(), lr=learning_rate)
|
111 |
+
cross_entropy = nn.CrossEntropyLoss()
|
112 |
+
|
113 |
+
scheduler = get_scheduler(
|
114 |
+
name="cosine",
|
115 |
+
optimizer=optimizer,
|
116 |
+
num_warmup_steps=warmup_steps,
|
117 |
+
num_training_steps=num_training_steps
|
118 |
+
)
|
119 |
+
|
120 |
+
wandb.init(
|
121 |
+
project="math-tiny-llama",
|
122 |
+
|
123 |
+
config={
|
124 |
+
"learning_rate": learning_rate,
|
125 |
+
"dataset": dataset_id,
|
126 |
+
"batch_size": per_dev_batch_size,
|
127 |
+
"lora_r": lora_conf.r,
|
128 |
+
"lora_alpha": lora_conf.lora_alpha,
|
129 |
+
"lora_dropout": lora_conf.lora_dropout,
|
130 |
+
"gradient_accumulation_steps": gradient_accumulation_steps,
|
131 |
+
"warmup_ratio": warmup_ratio,
|
132 |
+
"trainable_params": trainable_params,
|
133 |
+
"num_training_steps": num_training_steps,
|
134 |
+
"model_name": "TinyLlama"
|
135 |
+
}
|
136 |
+
)
|
137 |
+
|
138 |
+
optimizer, scheduler, train_dataloader, tokenizer, model = acc.prepare(optimizer, scheduler, train_dataloader, tokenizer, model)
|
139 |
+
|
140 |
+
def calc_metrics():
|
141 |
+
model.eval()
|
142 |
+
for batch in test_dataloader:
|
143 |
+
pred = model(**batch)
|
144 |
+
loss = pred.loss
|
145 |
+
|
146 |
+
wandb.log({"eval_loss": loss.item()})
|
147 |
+
|
148 |
+
model.train()
|
149 |
+
|
150 |
+
model.train()
|
151 |
+
for epoch in range(epochs):
|
152 |
+
for step, batch in enumerate(train_dataloader):
|
153 |
+
|
154 |
+
outputs = model(**batch)
|
155 |
+
loss = outputs.loss
|
156 |
+
|
157 |
+
loss.backward()
|
158 |
+
|
159 |
+
wandb.log({"loss": loss.item(), "learning_rate": optimizer.param_groups[0]['lr']})
|
160 |
+
|
161 |
+
if (step + 1) % gradient_accumulation_steps == 0:
|
162 |
+
optimizer.step()
|
163 |
+
scheduler.step()
|
164 |
+
optimizer.zero_grad()
|
165 |
+
global_step += 1
|
166 |
+
|
167 |
+
if (step + 1) % 100 == 0:
|
168 |
+
print(f"Loss: {loss.item()}")
|
169 |
+
|
170 |
+
if (step + 1) % 400 == 0:
|
171 |
+
calc_metrics()
|
172 |
+
|
173 |
+
if global_step > num_training_steps:
|
174 |
+
break
|
175 |
+
|
176 |
+
if global_step > num_training_steps:
|
177 |
+
break
|
178 |
+
|
179 |
+
wandb.finish()
|
180 |
+
|
181 |
+
save_path = os.path.join("checkpoint_2_", f"step_{global_step}")
|
182 |
+
model.module.save_pretrained(save_path)
|
183 |
+
|
184 |
+
print("Saved model")
|
ft_hus.py
ADDED
@@ -0,0 +1,192 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, DataCollatorForLanguageModeling, get_scheduler
|
2 |
+
from huggingface_hub import HfApi, notebook_login
|
3 |
+
from datasets import load_dataset
|
4 |
+
from peft import LoraConfig, LoraModel, get_peft_model
|
5 |
+
from timm.scheduler import CosineLRScheduler
|
6 |
+
import wandb
|
7 |
+
import os
|
8 |
+
from accelerate import Accelerator
|
9 |
+
import numpy as np
|
10 |
+
import torch
|
11 |
+
import tqdm
|
12 |
+
import torch.nn as nn
|
13 |
+
import torch.optim as optim
|
14 |
+
|
15 |
+
lora_conf = LoraConfig(
|
16 |
+
r=8,
|
17 |
+
lora_alpha=32,
|
18 |
+
lora_dropout=0.05,
|
19 |
+
bias="none",
|
20 |
+
task_type="CAUSAL_LM",
|
21 |
+
target_modules="all-linear",
|
22 |
+
modules_to_save=None,
|
23 |
+
)
|
24 |
+
|
25 |
+
model_id = "Qwen/Qwen2-1.5B-Instruct"
|
26 |
+
|
27 |
+
model_kwargs = dict(
|
28 |
+
use_cache=False,
|
29 |
+
#attn_implementation="flash_attention_2",
|
30 |
+
torch_dtype="auto",
|
31 |
+
device_map="sequential",
|
32 |
+
)
|
33 |
+
|
34 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
35 |
+
tokenizer.model_max_length = 4096
|
36 |
+
model = AutoModelForCausalLM.from_pretrained(model_id, **model_kwargs)
|
37 |
+
model = get_peft_model(model, lora_conf)
|
38 |
+
|
39 |
+
def count_trainable_parameters(model):
|
40 |
+
model_parameters = filter(lambda p: p.requires_grad, model.parameters())
|
41 |
+
params = sum([np.prod(p.size()) for p in model_parameters])
|
42 |
+
return params
|
43 |
+
|
44 |
+
trainable_params = format(count_trainable_parameters(model), ",")
|
45 |
+
|
46 |
+
epochs = 2
|
47 |
+
per_dev_batch_size = 2
|
48 |
+
gradient_accumulation_steps = 20
|
49 |
+
dtype = torch.bfloat16
|
50 |
+
learning_rate = 1e-4
|
51 |
+
|
52 |
+
def apply_chat_template(example, tokenizer):
|
53 |
+
convo = example['conversations']
|
54 |
+
for dic in convo:
|
55 |
+
dic['role'] = dic.pop('from')
|
56 |
+
dic['content'] = dic.pop('value')
|
57 |
+
if dic['role'] == 'gpt':
|
58 |
+
dic['role'] = 'assistant'
|
59 |
+
elif dic['role'] == 'human':
|
60 |
+
dic['role'] = 'user'
|
61 |
+
|
62 |
+
example['text'] = tokenizer.apply_chat_template(convo, tokenize=True, add_generation_prompt=False, truncation=True)
|
63 |
+
return example
|
64 |
+
|
65 |
+
train_dataset = dataset.select(range(98000))
|
66 |
+
test_dataset = dataset.select(range(3000))
|
67 |
+
column_names = list(train_dataset.features)
|
68 |
+
|
69 |
+
processed_train_dataset = train_dataset.map(
|
70 |
+
apply_chat_template,
|
71 |
+
fn_kwargs={"tokenizer": tokenizer},
|
72 |
+
num_proc=10,
|
73 |
+
remove_columns=column_names,
|
74 |
+
)
|
75 |
+
|
76 |
+
processed_test_dataset = test_dataset.map(
|
77 |
+
apply_chat_template,
|
78 |
+
fn_kwargs={"tokenizer": tokenizer},
|
79 |
+
num_proc=10,
|
80 |
+
remove_columns=column_names,
|
81 |
+
)
|
82 |
+
|
83 |
+
data_collator = DataCollatorForLanguageModeling(tokenizer=tokenizer, mlm=False)
|
84 |
+
|
85 |
+
train_dataloader = torch.utils.data.DataLoader( #
|
86 |
+
processed_train_dataset['text'],
|
87 |
+
batch_size=per_dev_batch_size,
|
88 |
+
shuffle=True,
|
89 |
+
collate_fn=data_collator
|
90 |
+
)
|
91 |
+
|
92 |
+
test_dataloader = torch.utils.data.DataLoader(
|
93 |
+
processed_test_dataset['text'],
|
94 |
+
batch_size=per_dev_batch_size,
|
95 |
+
shuffle=True,
|
96 |
+
collate_fn=data_collator
|
97 |
+
)
|
98 |
+
|
99 |
+
global_step = 0
|
100 |
+
num_training_steps = epochs * len(train_dataloader)
|
101 |
+
warmup_ratio = 0.1
|
102 |
+
warmup_steps = 800
|
103 |
+
#warmup_steps = int(warmup_ratio * num_training_steps)
|
104 |
+
|
105 |
+
optimizer = optim.AdamW(model.parameters(), lr=learning_rate)
|
106 |
+
cross_entropy = nn.CrossEntropyLoss()
|
107 |
+
|
108 |
+
scheduler = get_scheduler(
|
109 |
+
name="cosine",
|
110 |
+
optimizer=optimizer,
|
111 |
+
num_warmup_steps=warmup_steps,
|
112 |
+
num_training_steps=num_training_steps
|
113 |
+
)
|
114 |
+
|
115 |
+
acc = Accelerator(gradient_accumulation_steps=gradient_accumulation_steps)
|
116 |
+
|
117 |
+
if acc.is_main_process:
|
118 |
+
wandb.init(
|
119 |
+
project="qwen-hus-inst",
|
120 |
+
|
121 |
+
config={
|
122 |
+
"learning_rate": learning_rate,
|
123 |
+
"dataset": "Mix of RP and Instruct,
|
124 |
+
"batch_size": per_dev_batch_size,
|
125 |
+
"lora_r": lora_conf.r,
|
126 |
+
"lora_alpha": lora_conf.lora_alpha,
|
127 |
+
"lora_dropout": lora_conf.lora_dropout,
|
128 |
+
"gradient_accumulation_steps": gradient_accumulation_steps,
|
129 |
+
"warmup_ratio": warmup_ratio,
|
130 |
+
"trainable_params": trainable_params,
|
131 |
+
"num_training_steps": num_training_steps,
|
132 |
+
"model_name": model_id
|
133 |
+
}
|
134 |
+
)
|
135 |
+
|
136 |
+
optimizer, scheduler, train_dataloader, tokenizer, model, scheduler = acc.prepare(optimizer, scheduler, train_dataloader, tokenizer, model, scheduler)
|
137 |
+
|
138 |
+
def save_checkpoint():
|
139 |
+
if acc.is_main_process:
|
140 |
+
save_path = os.path.join("checkpoint_hus", f"step_{global_step}")
|
141 |
+
model.module.save_pretrained(save_path)
|
142 |
+
|
143 |
+
print(f"Saved model at step {global_step}")
|
144 |
+
|
145 |
+
def calc_metrics():
|
146 |
+
model.eval()
|
147 |
+
for batch in test_dataloader:
|
148 |
+
pred = model(**batch)
|
149 |
+
loss = pred.loss
|
150 |
+
|
151 |
+
if acc.is_main_process:
|
152 |
+
perplexity = torch.exp(loss)
|
153 |
+
wandb.log({"eval_loss": loss.item(), "eval_perplexity": perplexity})
|
154 |
+
|
155 |
+
model.train()
|
156 |
+
|
157 |
+
model.train()
|
158 |
+
for epoch in range(epochs):
|
159 |
+
for step, batch in enumerate(train_dataloader):
|
160 |
+
with acc.accumulate(model):
|
161 |
+
outputs = model(**batch)
|
162 |
+
loss = outputs.loss
|
163 |
+
acc.backward(loss)
|
164 |
+
optimizer.step()
|
165 |
+
scheduler.step()
|
166 |
+
optimizer.zero_grad()
|
167 |
+
|
168 |
+
if acc.is_main_process:
|
169 |
+
perplexity = torch.exp(loss)
|
170 |
+
wandb.log({"loss": loss.item(), "learning_rate": optimizer.param_groups[0]['lr'], "perplexity": perplexity})
|
171 |
+
|
172 |
+
global_step += 1
|
173 |
+
|
174 |
+
if (step + 1) % 1000 == 0:
|
175 |
+
save_checkpoint()
|
176 |
+
|
177 |
+
if (step + 1) % 100 == 0 and acc.is_main_process:
|
178 |
+
print(f"Loss: {loss.item()}")
|
179 |
+
|
180 |
+
|
181 |
+
if (step + 1) % 2000 == 0:
|
182 |
+
calc_metrics()
|
183 |
+
|
184 |
+
if global_step > num_training_steps:
|
185 |
+
break
|
186 |
+
|
187 |
+
if global_step > num_training_steps:
|
188 |
+
break
|
189 |
+
|
190 |
+
if acc.is_main_process:
|
191 |
+
wandb.finish()
|
192 |
+
save_checkpoint()
|
ft_instruct.py
ADDED
@@ -0,0 +1,208 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, DataCollatorForLanguageModeling, get_scheduler
|
2 |
+
from huggingface_hub import HfApi, notebook_login
|
3 |
+
from datasets import load_dataset
|
4 |
+
from peft import LoraConfig, LoraModel, get_peft_model
|
5 |
+
from timm.scheduler import CosineLRScheduler
|
6 |
+
import wandb
|
7 |
+
import os
|
8 |
+
from accelerate import Accelerator
|
9 |
+
import numpy as np
|
10 |
+
import torch
|
11 |
+
import tqdm
|
12 |
+
import torch.nn as nn
|
13 |
+
import torch.optim as optim
|
14 |
+
|
15 |
+
lora_conf = LoraConfig(
|
16 |
+
r=8,
|
17 |
+
lora_alpha=64,
|
18 |
+
lora_dropout=0.05,
|
19 |
+
bias="none",
|
20 |
+
task_type="CAUSAL_LM",
|
21 |
+
target_modules="all-linear",
|
22 |
+
modules_to_save=None,
|
23 |
+
)
|
24 |
+
|
25 |
+
model_id = "TinyLlama/TinyLlama-1.1B-Chat-v1.0"
|
26 |
+
dataset_id = "BAAI/Infinity-Instruct"
|
27 |
+
|
28 |
+
model_kwargs = dict(
|
29 |
+
use_cache=False,
|
30 |
+
attn_implementation="flash_attention_2",
|
31 |
+
torch_dtype=torch.bfloat16,
|
32 |
+
device_map="sequential",
|
33 |
+
)
|
34 |
+
|
35 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
36 |
+
tokenizer.model_max_length = 2048
|
37 |
+
model = AutoModelForCausalLM.from_pretrained(model_id, **model_kwargs)
|
38 |
+
model = get_peft_model(model, lora_conf)
|
39 |
+
|
40 |
+
def count_trainable_parameters(model):
|
41 |
+
model_parameters = filter(lambda p: p.requires_grad, model.parameters())
|
42 |
+
params = sum([np.prod(p.size()) for p in model_parameters])
|
43 |
+
return params
|
44 |
+
|
45 |
+
trainable_params = format(count_trainable_parameters(model), ",")
|
46 |
+
|
47 |
+
epochs = 1
|
48 |
+
per_dev_batch_size = 1
|
49 |
+
gradient_accumulation_steps = 30
|
50 |
+
dtype = torch.bfloat16
|
51 |
+
learning_rate = 1e-5
|
52 |
+
|
53 |
+
raw_dataset = load_dataset(dataset_id, "0625", split="train")
|
54 |
+
|
55 |
+
def apply_chat_template(example, tokenizer):
|
56 |
+
convo = example['conversations']
|
57 |
+
for dic in convo:
|
58 |
+
dic['role'] = dic.pop('from')
|
59 |
+
dic['content'] = dic.pop('value')
|
60 |
+
if dic['role'] == 'gpt':
|
61 |
+
dic['role'] = 'assistant'
|
62 |
+
elif dic['role'] == 'human':
|
63 |
+
dic['role'] = 'user'
|
64 |
+
|
65 |
+
example['text'] = tokenizer.apply_chat_template(convo, tokenize=True, add_generation_prompt=False, truncation=True)
|
66 |
+
return example
|
67 |
+
|
68 |
+
train_dataset = raw_dataset.select(range(100000))
|
69 |
+
test_dataset = raw_dataset.select(range(300))
|
70 |
+
column_names = list(train_dataset.features)
|
71 |
+
|
72 |
+
processed_train_dataset = train_dataset.map(
|
73 |
+
apply_chat_template,
|
74 |
+
# batched=True,
|
75 |
+
# batch_size=20,
|
76 |
+
fn_kwargs={"tokenizer": tokenizer},
|
77 |
+
num_proc=10,
|
78 |
+
remove_columns=column_names,
|
79 |
+
)
|
80 |
+
|
81 |
+
processed_test_dataset = test_dataset.map(
|
82 |
+
apply_chat_template,
|
83 |
+
# batched=True,
|
84 |
+
# batch_size=20,
|
85 |
+
fn_kwargs={"tokenizer": tokenizer},
|
86 |
+
num_proc=10,
|
87 |
+
remove_columns=column_names,
|
88 |
+
)
|
89 |
+
|
90 |
+
data_collator = DataCollatorForLanguageModeling(tokenizer=tokenizer, mlm=False)
|
91 |
+
|
92 |
+
train_dataloader = torch.utils.data.DataLoader( #
|
93 |
+
processed_train_dataset['text'],
|
94 |
+
batch_size=per_dev_batch_size,
|
95 |
+
shuffle=True,
|
96 |
+
collate_fn=data_collator
|
97 |
+
)
|
98 |
+
|
99 |
+
test_dataloader = torch.utils.data.DataLoader(
|
100 |
+
processed_test_dataset['text'],
|
101 |
+
batch_size=per_dev_batch_size,
|
102 |
+
shuffle=True,
|
103 |
+
collate_fn=data_collator
|
104 |
+
)
|
105 |
+
|
106 |
+
global_step = 0
|
107 |
+
num_training_steps = epochs * len(train_dataloader)
|
108 |
+
warmup_ratio = 0.1
|
109 |
+
warmup_steps = 1000
|
110 |
+
#warmup_steps = int(warmup_ratio * num_training_steps)
|
111 |
+
|
112 |
+
optimizer = optim.AdamW(model.parameters(), lr=learning_rate)
|
113 |
+
cross_entropy = nn.CrossEntropyLoss()
|
114 |
+
|
115 |
+
scheduler = get_scheduler(
|
116 |
+
name="cosine",
|
117 |
+
optimizer=optimizer,
|
118 |
+
num_warmup_steps=warmup_steps,
|
119 |
+
num_training_steps=num_training_steps
|
120 |
+
)
|
121 |
+
|
122 |
+
acc = Accelerator(gradient_accumulation_steps=gradient_accumulation_steps)
|
123 |
+
|
124 |
+
if acc.is_main_process:
|
125 |
+
wandb.init(
|
126 |
+
project="tiny-llama-instruct",
|
127 |
+
|
128 |
+
config={
|
129 |
+
"learning_rate": learning_rate,
|
130 |
+
"dataset": dataset_id,
|
131 |
+
"batch_size": per_dev_batch_size,
|
132 |
+
"lora_r": lora_conf.r,
|
133 |
+
"lora_alpha": lora_conf.lora_alpha,
|
134 |
+
"lora_dropout": lora_conf.lora_dropout,
|
135 |
+
"gradient_accumulation_steps": gradient_accumulation_steps,
|
136 |
+
"warmup_ratio": warmup_ratio,
|
137 |
+
"trainable_params": trainable_params,
|
138 |
+
"num_training_steps": num_training_steps,
|
139 |
+
"model_name": "TinyLlama"
|
140 |
+
}
|
141 |
+
)
|
142 |
+
|
143 |
+
optimizer, scheduler, train_dataloader, tokenizer, model, scheduler = acc.prepare(optimizer, scheduler, train_dataloader, tokenizer, model, scheduler)
|
144 |
+
|
145 |
+
def calc_metrics():
|
146 |
+
model.eval()
|
147 |
+
for batch in test_dataloader:
|
148 |
+
pred = model(**batch)
|
149 |
+
loss = pred.loss
|
150 |
+
|
151 |
+
if acc.is_main_process:
|
152 |
+
perplexity = torch.exp(loss)
|
153 |
+
wandb.log({"eval_loss": loss.item(), "eval_perplexity": perplexity})
|
154 |
+
|
155 |
+
model.train()
|
156 |
+
|
157 |
+
device = acc.device
|
158 |
+
|
159 |
+
model.train()
|
160 |
+
for epoch in range(epochs):
|
161 |
+
for step, batch in enumerate(train_dataloader):
|
162 |
+
|
163 |
+
# outputs = model(**batch)
|
164 |
+
# loss = outputs.loss
|
165 |
+
|
166 |
+
# acc.backward(loss)
|
167 |
+
# wandb.log({"loss": loss.item(), "learning_rate": optimizer.param_groups[0]['lr'], "perplexity": perplexity})
|
168 |
+
|
169 |
+
with acc.accumulate(model):
|
170 |
+
batch = {k: v.to(device) for k, v in batch.items()}
|
171 |
+
outputs = model(**batch)
|
172 |
+
loss = outputs.loss
|
173 |
+
acc.backward(loss)
|
174 |
+
optimizer.step()
|
175 |
+
scheduler.step()
|
176 |
+
optimizer.zero_grad()
|
177 |
+
|
178 |
+
if acc.is_main_process:
|
179 |
+
perplexity = torch.exp(loss)
|
180 |
+
wandb.log({"loss": loss.item(), "learning_rate": optimizer.param_groups[0]['lr'], "perplexity": perplexity})
|
181 |
+
|
182 |
+
global_step += 1
|
183 |
+
|
184 |
+
# if (step + 1) % gradient_accumulation_steps == 0:
|
185 |
+
# optimizer.step()
|
186 |
+
# scheduler.step()
|
187 |
+
# optimizer.zero_grad()
|
188 |
+
# global_step += 1
|
189 |
+
|
190 |
+
if (step + 1) % 100 == 0 and acc.is_main_process:
|
191 |
+
print(f"Loss: {loss.item()}")
|
192 |
+
|
193 |
+
if (step + 1) % 400 == 0:
|
194 |
+
calc_metrics()
|
195 |
+
|
196 |
+
if global_step > num_training_steps:
|
197 |
+
break
|
198 |
+
|
199 |
+
if global_step > num_training_steps:
|
200 |
+
break
|
201 |
+
|
202 |
+
if acc.is_main_process:
|
203 |
+
wandb.finish()
|
204 |
+
|
205 |
+
save_path = os.path.join("checkpoint_instruct_2", f"step_{global_step}")
|
206 |
+
model.module.save_pretrained(save_path)
|
207 |
+
|
208 |
+
print("Saved model")
|
ft_news.py
ADDED
@@ -0,0 +1,213 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, DataCollatorForLanguageModeling, get_scheduler
|
2 |
+
from huggingface_hub import HfApi, notebook_login
|
3 |
+
from datasets import load_dataset
|
4 |
+
from peft import LoraConfig, LoraModel, get_peft_model
|
5 |
+
from timm.scheduler import CosineLRScheduler
|
6 |
+
import wandb
|
7 |
+
import os
|
8 |
+
from accelerate import Accelerator
|
9 |
+
import numpy as np
|
10 |
+
import torch
|
11 |
+
import tqdm
|
12 |
+
import torch.nn as nn
|
13 |
+
import torch.optim as optim
|
14 |
+
|
15 |
+
lora_conf = LoraConfig(
|
16 |
+
r=8,
|
17 |
+
lora_alpha=32,
|
18 |
+
lora_dropout=0.05,
|
19 |
+
bias="none",
|
20 |
+
task_type="CAUSAL_LM",
|
21 |
+
target_modules="all-linear",
|
22 |
+
modules_to_save=None,
|
23 |
+
)
|
24 |
+
|
25 |
+
model_id = "Qwen/Qwen2-1.5B-Instruct"
|
26 |
+
dataset_id = "GonzaloA/fake_news"
|
27 |
+
|
28 |
+
model_kwargs = dict(
|
29 |
+
use_cache=False,
|
30 |
+
#attn_implementation="flash_attention_2",
|
31 |
+
torch_dtype="auto",
|
32 |
+
device_map="sequential",
|
33 |
+
)
|
34 |
+
|
35 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
36 |
+
tokenizer.model_max_length = 2048
|
37 |
+
model = AutoModelForCausalLM.from_pretrained(model_id, **model_kwargs)
|
38 |
+
model = get_peft_model(model, lora_conf)
|
39 |
+
|
40 |
+
def count_trainable_parameters(model):
|
41 |
+
model_parameters = filter(lambda p: p.requires_grad, model.parameters())
|
42 |
+
params = sum([np.prod(p.size()) for p in model_parameters])
|
43 |
+
return params
|
44 |
+
|
45 |
+
trainable_params = format(count_trainable_parameters(model), ",")
|
46 |
+
|
47 |
+
epochs = 1
|
48 |
+
per_dev_batch_size = 1
|
49 |
+
gradient_accumulation_steps = 20
|
50 |
+
dtype = torch.bfloat16
|
51 |
+
learning_rate = 1e-4
|
52 |
+
|
53 |
+
train_dataset = load_dataset(dataset_id, split="train")
|
54 |
+
test_dataset = load_dataset(dataset_id, split="test").select(range(100))
|
55 |
+
|
56 |
+
def apply_chat_template(example, tokenizer):
|
57 |
+
story = example['text']
|
58 |
+
chat = [
|
59 |
+
{"role": "system", "content": "Given a title, please generate a news story"},
|
60 |
+
{"role": "user", "content": example['title']},
|
61 |
+
{"role": "assistant", "content": story}
|
62 |
+
]
|
63 |
+
|
64 |
+
example['text'] = tokenizer.apply_chat_template(chat, tokenize=True, add_generation_prompt=False, truncation=True)
|
65 |
+
#example['text'] = tokenizer([text], return_tensors="pt")
|
66 |
+
return example
|
67 |
+
|
68 |
+
|
69 |
+
processed_train_dataset = train_dataset.map(
|
70 |
+
apply_chat_template,
|
71 |
+
# batched=True,
|
72 |
+
# batch_size=20,
|
73 |
+
fn_kwargs={"tokenizer": tokenizer},
|
74 |
+
num_proc=10,
|
75 |
+
#remove_columns=column_names,
|
76 |
+
)
|
77 |
+
|
78 |
+
processed_test_dataset = test_dataset.map(
|
79 |
+
apply_chat_template,
|
80 |
+
# batched=True,
|
81 |
+
# batch_size=20,
|
82 |
+
fn_kwargs={"tokenizer": tokenizer},
|
83 |
+
num_proc=10,
|
84 |
+
#remove_columns=column_names,
|
85 |
+
)
|
86 |
+
|
87 |
+
data_collator = DataCollatorForLanguageModeling(tokenizer=tokenizer, mlm=False)
|
88 |
+
|
89 |
+
train_dataloader = torch.utils.data.DataLoader( #
|
90 |
+
processed_train_dataset['text'],
|
91 |
+
batch_size=per_dev_batch_size,
|
92 |
+
shuffle=False,
|
93 |
+
collate_fn=data_collator
|
94 |
+
)
|
95 |
+
|
96 |
+
test_dataloader = torch.utils.data.DataLoader(
|
97 |
+
processed_test_dataset['text'],
|
98 |
+
batch_size=per_dev_batch_size,
|
99 |
+
shuffle=False,
|
100 |
+
collate_fn=data_collator
|
101 |
+
)
|
102 |
+
|
103 |
+
global_step = 0
|
104 |
+
num_training_steps = epochs * len(train_dataloader)
|
105 |
+
warmup_ratio = 0.1
|
106 |
+
warmup_steps = 500
|
107 |
+
#warmup_steps = int(warmup_ratio * num_training_steps)
|
108 |
+
|
109 |
+
optimizer = optim.AdamW(model.parameters(), lr=learning_rate)
|
110 |
+
cross_entropy = nn.CrossEntropyLoss()
|
111 |
+
|
112 |
+
scheduler = get_scheduler(
|
113 |
+
name="cosine",
|
114 |
+
optimizer=optimizer,
|
115 |
+
num_warmup_steps=warmup_steps,
|
116 |
+
num_training_steps=num_training_steps
|
117 |
+
)
|
118 |
+
|
119 |
+
acc = Accelerator(gradient_accumulation_steps=gradient_accumulation_steps)
|
120 |
+
|
121 |
+
if acc.is_main_process:
|
122 |
+
wandb.init(
|
123 |
+
project="qwen-fake-news",
|
124 |
+
|
125 |
+
config={
|
126 |
+
"learning_rate": learning_rate,
|
127 |
+
"dataset": dataset_id,
|
128 |
+
"batch_size": per_dev_batch_size,
|
129 |
+
"lora_r": lora_conf.r,
|
130 |
+
"lora_alpha": lora_conf.lora_alpha,
|
131 |
+
"lora_dropout": lora_conf.lora_dropout,
|
132 |
+
"gradient_accumulation_steps": gradient_accumulation_steps,
|
133 |
+
"warmup_ratio": warmup_ratio,
|
134 |
+
"trainable_params": trainable_params,
|
135 |
+
"num_training_steps": num_training_steps,
|
136 |
+
"model_name": "TinyLlama"
|
137 |
+
}
|
138 |
+
)
|
139 |
+
|
140 |
+
optimizer, scheduler, train_dataloader, tokenizer, model, scheduler = acc.prepare(optimizer, scheduler, train_dataloader, tokenizer, model, scheduler)
|
141 |
+
|
142 |
+
def save_checkpoint():
|
143 |
+
if acc.is_main_process:
|
144 |
+
save_path = os.path.join("checkpoint_news", f"step_{global_step}")
|
145 |
+
model.module.save_pretrained(save_path)
|
146 |
+
|
147 |
+
print(f"Saved model at step {global_step}")
|
148 |
+
|
149 |
+
def calc_metrics():
|
150 |
+
model.eval()
|
151 |
+
for batch in test_dataloader:
|
152 |
+
pred = model(**batch)
|
153 |
+
loss = pred.loss
|
154 |
+
|
155 |
+
if acc.is_main_process:
|
156 |
+
perplexity = torch.exp(loss)
|
157 |
+
wandb.log({"eval_loss": loss.item(), "eval_perplexity": perplexity})
|
158 |
+
|
159 |
+
model.train()
|
160 |
+
|
161 |
+
device = acc.device
|
162 |
+
|
163 |
+
model.train()
|
164 |
+
for epoch in range(epochs):
|
165 |
+
for step, batch in enumerate(train_dataloader):
|
166 |
+
#print(tokenizer.decode(batch['input_ids'][0]))
|
167 |
+
|
168 |
+
# outputs = model(**batch)
|
169 |
+
# loss = outputs.loss
|
170 |
+
|
171 |
+
# acc.backward(loss)
|
172 |
+
# wandb.log({"loss": loss.item(), "learning_rate": optimizer.param_groups[0]['lr'], "perplexity": perplexity})
|
173 |
+
|
174 |
+
with acc.accumulate(model):
|
175 |
+
#batch = {k: v.to(device) for k, v in batch.items()}
|
176 |
+
outputs = model(**batch)
|
177 |
+
loss = outputs.loss
|
178 |
+
acc.backward(loss)
|
179 |
+
optimizer.step()
|
180 |
+
scheduler.step()
|
181 |
+
optimizer.zero_grad()
|
182 |
+
|
183 |
+
if acc.is_main_process:
|
184 |
+
perplexity = torch.exp(loss)
|
185 |
+
wandb.log({"loss": loss.item(), "learning_rate": optimizer.param_groups[0]['lr'], "perplexity": perplexity})
|
186 |
+
|
187 |
+
global_step += 1
|
188 |
+
|
189 |
+
if (step + 1) % 1000 == 0:
|
190 |
+
save_checkpoint()
|
191 |
+
|
192 |
+
# if (step + 1) % gradient_accumulation_steps == 0:
|
193 |
+
# optimizer.step()
|
194 |
+
# scheduler.step()
|
195 |
+
# optimizer.zero_grad()
|
196 |
+
# global_step += 1
|
197 |
+
|
198 |
+
if (step + 1) % 100 == 0 and acc.is_main_process:
|
199 |
+
print(f"Loss: {loss.item()}")
|
200 |
+
|
201 |
+
|
202 |
+
if (step + 1) % 400 == 0:
|
203 |
+
calc_metrics()
|
204 |
+
|
205 |
+
if global_step > num_training_steps:
|
206 |
+
break
|
207 |
+
|
208 |
+
if global_step > num_training_steps:
|
209 |
+
break
|
210 |
+
|
211 |
+
if acc.is_main_process:
|
212 |
+
wandb.finish()
|
213 |
+
save_checkpoint()
|
ft_skib.py
ADDED
@@ -0,0 +1,223 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, DataCollatorForLanguageModeling, get_scheduler
|
2 |
+
from huggingface_hub import HfApi, notebook_login
|
3 |
+
from datasets import load_dataset
|
4 |
+
from peft import LoraConfig, LoraModel, get_peft_model
|
5 |
+
from timm.scheduler import CosineLRScheduler
|
6 |
+
import wandb
|
7 |
+
import os
|
8 |
+
from accelerate import Accelerator
|
9 |
+
import numpy as np
|
10 |
+
import torch
|
11 |
+
import tqdm
|
12 |
+
import torch.nn as nn
|
13 |
+
import torch.optim as optim
|
14 |
+
|
15 |
+
lora_conf = LoraConfig(
|
16 |
+
r=8,
|
17 |
+
lora_alpha=32,
|
18 |
+
lora_dropout=0.05,
|
19 |
+
bias="none",
|
20 |
+
task_type="CAUSAL_LM",
|
21 |
+
target_modules="all-linear",
|
22 |
+
modules_to_save=None,
|
23 |
+
)
|
24 |
+
|
25 |
+
model_id = "Qwen/Qwen2-1.5B-Instruct"
|
26 |
+
dataset_id = "HuggingFaceH4/orca-math-word-problems-200k"
|
27 |
+
|
28 |
+
model_kwargs = dict(
|
29 |
+
use_cache=False,
|
30 |
+
#attn_implementation="flash_attention_2",
|
31 |
+
torch_dtype="auto",
|
32 |
+
device_map="sequential",
|
33 |
+
)
|
34 |
+
|
35 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
36 |
+
tokenizer.model_max_length = 2048
|
37 |
+
model = AutoModelForCausalLM.from_pretrained(model_id, **model_kwargs)
|
38 |
+
model = get_peft_model(model, lora_conf)
|
39 |
+
|
40 |
+
def count_trainable_parameters(model):
|
41 |
+
model_parameters = filter(lambda p: p.requires_grad, model.parameters())
|
42 |
+
params = sum([np.prod(p.size()) for p in model_parameters])
|
43 |
+
return params
|
44 |
+
|
45 |
+
trainable_params = format(count_trainable_parameters(model), ",")
|
46 |
+
|
47 |
+
epochs = 1
|
48 |
+
per_dev_batch_size = 1
|
49 |
+
gradient_accumulation_steps = 20
|
50 |
+
dtype = torch.bfloat16
|
51 |
+
learning_rate = 1e-4
|
52 |
+
|
53 |
+
train_dataset = load_dataset(dataset_id, split="train_sft").select(range(150000))
|
54 |
+
test_dataset = load_dataset(dataset_id, split="test_sft").select(range(100))
|
55 |
+
|
56 |
+
# def apply_chat_template(example, tokenizer):
|
57 |
+
# chat = []
|
58 |
+
# convo = example['conversations']
|
59 |
+
# for dic in convo:
|
60 |
+
# if dic['from'] == 'human':
|
61 |
+
# chat = [
|
62 |
+
# {"role": "user", "content": dic['value']},
|
63 |
+
# {"role": "assistant", "content": "skibbidy"}
|
64 |
+
# ]
|
65 |
+
|
66 |
+
# example['text'] = tokenizer.apply_chat_template(chat, tokenize=True, add_generation_prompt=False, truncation=True)
|
67 |
+
# return example
|
68 |
+
|
69 |
+
# train_dataset = raw_dataset.select(range(10000))
|
70 |
+
# test_dataset = raw_dataset.select(range(300))
|
71 |
+
# column_names = list(train_dataset.features)
|
72 |
+
|
73 |
+
def apply_chat_template(example, tokenizer):
|
74 |
+
example['text'] = tokenizer.apply_chat_template(example['messages'], tokenize=True, add_generation_prompt=False, truncation=True)
|
75 |
+
return example
|
76 |
+
|
77 |
+
column_names = list(train_dataset.features)
|
78 |
+
|
79 |
+
processed_train_dataset = train_dataset.map(
|
80 |
+
apply_chat_template,
|
81 |
+
# batched=True,
|
82 |
+
# batch_size=20,
|
83 |
+
fn_kwargs={"tokenizer": tokenizer},
|
84 |
+
num_proc=10,
|
85 |
+
remove_columns=column_names,
|
86 |
+
)
|
87 |
+
|
88 |
+
processed_test_dataset = test_dataset.map(
|
89 |
+
apply_chat_template,
|
90 |
+
# batched=True,
|
91 |
+
# batch_size=20,
|
92 |
+
fn_kwargs={"tokenizer": tokenizer},
|
93 |
+
num_proc=10,
|
94 |
+
remove_columns=column_names,
|
95 |
+
)
|
96 |
+
|
97 |
+
data_collator = DataCollatorForLanguageModeling(tokenizer=tokenizer, mlm=False)
|
98 |
+
|
99 |
+
train_dataloader = torch.utils.data.DataLoader( #
|
100 |
+
processed_train_dataset['text'],
|
101 |
+
batch_size=per_dev_batch_size,
|
102 |
+
shuffle=False,
|
103 |
+
collate_fn=data_collator
|
104 |
+
)
|
105 |
+
|
106 |
+
test_dataloader = torch.utils.data.DataLoader(
|
107 |
+
processed_test_dataset['text'],
|
108 |
+
batch_size=per_dev_batch_size,
|
109 |
+
shuffle=False,
|
110 |
+
collate_fn=data_collator
|
111 |
+
)
|
112 |
+
|
113 |
+
global_step = 0
|
114 |
+
num_training_steps = epochs * len(train_dataloader)
|
115 |
+
warmup_ratio = 0.1
|
116 |
+
warmup_steps = 500
|
117 |
+
#warmup_steps = int(warmup_ratio * num_training_steps)
|
118 |
+
|
119 |
+
optimizer = optim.AdamW(model.parameters(), lr=learning_rate)
|
120 |
+
cross_entropy = nn.CrossEntropyLoss()
|
121 |
+
|
122 |
+
scheduler = get_scheduler(
|
123 |
+
name="cosine",
|
124 |
+
optimizer=optimizer,
|
125 |
+
num_warmup_steps=warmup_steps,
|
126 |
+
num_training_steps=num_training_steps
|
127 |
+
)
|
128 |
+
|
129 |
+
acc = Accelerator(gradient_accumulation_steps=gradient_accumulation_steps)
|
130 |
+
|
131 |
+
if acc.is_main_process:
|
132 |
+
wandb.init(
|
133 |
+
project="qwen-math",
|
134 |
+
|
135 |
+
config={
|
136 |
+
"learning_rate": learning_rate,
|
137 |
+
"dataset": dataset_id,
|
138 |
+
"batch_size": per_dev_batch_size,
|
139 |
+
"lora_r": lora_conf.r,
|
140 |
+
"lora_alpha": lora_conf.lora_alpha,
|
141 |
+
"lora_dropout": lora_conf.lora_dropout,
|
142 |
+
"gradient_accumulation_steps": gradient_accumulation_steps,
|
143 |
+
"warmup_ratio": warmup_ratio,
|
144 |
+
"trainable_params": trainable_params,
|
145 |
+
"num_training_steps": num_training_steps,
|
146 |
+
"model_name": "TinyLlama"
|
147 |
+
}
|
148 |
+
)
|
149 |
+
|
150 |
+
optimizer, scheduler, train_dataloader, tokenizer, model, scheduler = acc.prepare(optimizer, scheduler, train_dataloader, tokenizer, model, scheduler)
|
151 |
+
|
152 |
+
def save_checkpoint():
|
153 |
+
if acc.is_main_process:
|
154 |
+
save_path = os.path.join("checkpoint_math", f"step_{global_step}")
|
155 |
+
model.module.save_pretrained(save_path)
|
156 |
+
|
157 |
+
print(f"Saved model at step {global_step}")
|
158 |
+
|
159 |
+
def calc_metrics():
|
160 |
+
model.eval()
|
161 |
+
for batch in test_dataloader:
|
162 |
+
pred = model(**batch)
|
163 |
+
loss = pred.loss
|
164 |
+
|
165 |
+
if acc.is_main_process:
|
166 |
+
perplexity = torch.exp(loss)
|
167 |
+
wandb.log({"eval_loss": loss.item(), "eval_perplexity": perplexity})
|
168 |
+
|
169 |
+
model.train()
|
170 |
+
|
171 |
+
device = acc.device
|
172 |
+
|
173 |
+
model.train()
|
174 |
+
for epoch in range(epochs):
|
175 |
+
for step, batch in enumerate(train_dataloader):
|
176 |
+
#print(tokenizer.decode(batch['input_ids'][0]))
|
177 |
+
|
178 |
+
# outputs = model(**batch)
|
179 |
+
# loss = outputs.loss
|
180 |
+
|
181 |
+
# acc.backward(loss)
|
182 |
+
# wandb.log({"loss": loss.item(), "learning_rate": optimizer.param_groups[0]['lr'], "perplexity": perplexity})
|
183 |
+
|
184 |
+
with acc.accumulate(model):
|
185 |
+
#batch = {k: v.to(device) for k, v in batch.items()}
|
186 |
+
outputs = model(**batch)
|
187 |
+
loss = outputs.loss
|
188 |
+
acc.backward(loss)
|
189 |
+
optimizer.step()
|
190 |
+
scheduler.step()
|
191 |
+
optimizer.zero_grad()
|
192 |
+
|
193 |
+
if acc.is_main_process:
|
194 |
+
perplexity = torch.exp(loss)
|
195 |
+
wandb.log({"loss": loss.item(), "learning_rate": optimizer.param_groups[0]['lr'], "perplexity": perplexity})
|
196 |
+
|
197 |
+
global_step += 1
|
198 |
+
|
199 |
+
if (step + 1) % 1000 == 0:
|
200 |
+
save_checkpoint()
|
201 |
+
|
202 |
+
# if (step + 1) % gradient_accumulation_steps == 0:
|
203 |
+
# optimizer.step()
|
204 |
+
# scheduler.step()
|
205 |
+
# optimizer.zero_grad()
|
206 |
+
# global_step += 1
|
207 |
+
|
208 |
+
if (step + 1) % 100 == 0 and acc.is_main_process:
|
209 |
+
print(f"Loss: {loss.item()}")
|
210 |
+
|
211 |
+
|
212 |
+
if (step + 1) % 400 == 0:
|
213 |
+
calc_metrics()
|
214 |
+
|
215 |
+
if global_step > num_training_steps:
|
216 |
+
break
|
217 |
+
|
218 |
+
if global_step > num_training_steps:
|
219 |
+
break
|
220 |
+
|
221 |
+
if acc.is_main_process:
|
222 |
+
wandb.finish()
|
223 |
+
save_checkpoint()
|