from transformers import AutoTokenizer, AutoModelForCausalLM, DataCollatorForLanguageModeling, get_scheduler from huggingface_hub import HfApi, notebook_login from datasets import load_dataset from peft import LoraConfig, LoraModel, get_peft_model from timm.scheduler import CosineLRScheduler import wandb import os from accelerate import Accelerator import numpy as np import torch import tqdm import torch.nn as nn import torch.optim as optim lora_conf = LoraConfig( r=8, lora_alpha=32, lora_dropout=0.05, bias="none", task_type="CAUSAL_LM", target_modules="all-linear", modules_to_save=None, ) model_id = "Qwen/Qwen2-1.5B-Instruct" dataset_id = "GonzaloA/fake_news" model_kwargs = dict( use_cache=False, #attn_implementation="flash_attention_2", torch_dtype="auto", device_map="sequential", ) tokenizer = AutoTokenizer.from_pretrained(model_id) tokenizer.model_max_length = 2048 model = AutoModelForCausalLM.from_pretrained(model_id, **model_kwargs) model = get_peft_model(model, lora_conf) def count_trainable_parameters(model): model_parameters = filter(lambda p: p.requires_grad, model.parameters()) params = sum([np.prod(p.size()) for p in model_parameters]) return params trainable_params = format(count_trainable_parameters(model), ",") epochs = 1 per_dev_batch_size = 1 gradient_accumulation_steps = 20 dtype = torch.bfloat16 learning_rate = 1e-4 train_dataset = load_dataset(dataset_id, split="train") test_dataset = load_dataset(dataset_id, split="test").select(range(100)) def apply_chat_template(example, tokenizer): story = example['text'] chat = [ {"role": "system", "content": "Given a title, please generate a news story"}, {"role": "user", "content": example['title']}, {"role": "assistant", "content": story} ] example['text'] = tokenizer.apply_chat_template(chat, tokenize=True, add_generation_prompt=False, truncation=True) #example['text'] = tokenizer([text], return_tensors="pt") return example processed_train_dataset = train_dataset.map( apply_chat_template, # batched=True, # batch_size=20, fn_kwargs={"tokenizer": tokenizer}, num_proc=10, #remove_columns=column_names, ) processed_test_dataset = test_dataset.map( apply_chat_template, # batched=True, # batch_size=20, fn_kwargs={"tokenizer": tokenizer}, num_proc=10, #remove_columns=column_names, ) data_collator = DataCollatorForLanguageModeling(tokenizer=tokenizer, mlm=False) train_dataloader = torch.utils.data.DataLoader( # processed_train_dataset['text'], batch_size=per_dev_batch_size, shuffle=False, collate_fn=data_collator ) test_dataloader = torch.utils.data.DataLoader( processed_test_dataset['text'], batch_size=per_dev_batch_size, shuffle=False, collate_fn=data_collator ) global_step = 0 num_training_steps = epochs * len(train_dataloader) warmup_ratio = 0.1 warmup_steps = 500 #warmup_steps = int(warmup_ratio * num_training_steps) optimizer = optim.AdamW(model.parameters(), lr=learning_rate) cross_entropy = nn.CrossEntropyLoss() scheduler = get_scheduler( name="cosine", optimizer=optimizer, num_warmup_steps=warmup_steps, num_training_steps=num_training_steps ) acc = Accelerator(gradient_accumulation_steps=gradient_accumulation_steps) if acc.is_main_process: wandb.init( project="qwen-fake-news", config={ "learning_rate": learning_rate, "dataset": dataset_id, "batch_size": per_dev_batch_size, "lora_r": lora_conf.r, "lora_alpha": lora_conf.lora_alpha, "lora_dropout": lora_conf.lora_dropout, "gradient_accumulation_steps": gradient_accumulation_steps, "warmup_ratio": warmup_ratio, "trainable_params": trainable_params, "num_training_steps": num_training_steps, "model_name": "TinyLlama" } ) optimizer, scheduler, train_dataloader, tokenizer, model, scheduler = acc.prepare(optimizer, scheduler, train_dataloader, tokenizer, model, scheduler) def save_checkpoint(): if acc.is_main_process: save_path = os.path.join("checkpoint_news", f"step_{global_step}") model.module.save_pretrained(save_path) print(f"Saved model at step {global_step}") def calc_metrics(): model.eval() for batch in test_dataloader: pred = model(**batch) loss = pred.loss if acc.is_main_process: perplexity = torch.exp(loss) wandb.log({"eval_loss": loss.item(), "eval_perplexity": perplexity}) model.train() device = acc.device model.train() for epoch in range(epochs): for step, batch in enumerate(train_dataloader): #print(tokenizer.decode(batch['input_ids'][0])) # outputs = model(**batch) # loss = outputs.loss # acc.backward(loss) # wandb.log({"loss": loss.item(), "learning_rate": optimizer.param_groups[0]['lr'], "perplexity": perplexity}) with acc.accumulate(model): #batch = {k: v.to(device) for k, v in batch.items()} outputs = model(**batch) loss = outputs.loss acc.backward(loss) optimizer.step() scheduler.step() optimizer.zero_grad() if acc.is_main_process: perplexity = torch.exp(loss) wandb.log({"loss": loss.item(), "learning_rate": optimizer.param_groups[0]['lr'], "perplexity": perplexity}) global_step += 1 if (step + 1) % 1000 == 0: save_checkpoint() # if (step + 1) % gradient_accumulation_steps == 0: # optimizer.step() # scheduler.step() # optimizer.zero_grad() # global_step += 1 if (step + 1) % 100 == 0 and acc.is_main_process: print(f"Loss: {loss.item()}") if (step + 1) % 400 == 0: calc_metrics() if global_step > num_training_steps: break if global_step > num_training_steps: break if acc.is_main_process: wandb.finish() save_checkpoint()