Jinchen Ge commited on
Commit
810aa11
·
1 Parent(s): 675179f

Add test set

Browse files
Files changed (1) hide show
  1. gqa-lxmert.py +29 -9
gqa-lxmert.py CHANGED
@@ -44,12 +44,15 @@ seeking to address key shortcomings of previous visual question answering (VQA)
44
 
45
  _URLS = {
46
  "train": "https://nlp.cs.unc.edu/data/lxmert_data/gqa/train.json",
47
- "dev": "https://nlp.cs.unc.edu/data/lxmert_data/gqa/valid.json",
48
- "feat": "https://nlp.cs.unc.edu/data/lxmert_data/vg_gqa_imgfeat/vg_gqa_obj36.zip",
 
 
49
  "ans2label": "https://raw.githubusercontent.com/airsplay/lxmert/master/data/gqa/trainval_ans2label.json",
50
  }
51
 
52
- _FEAT_PATH = "vg_gqa_imgfeat/vg_gqa_obj36.tsv"
 
53
 
54
  FIELDNAMES = [
55
  "img_id", "img_h", "img_w", "objects_id", "objects_conf", "attrs_id", "attrs_conf", "num_boxes", "boxes", "features"
@@ -89,16 +92,21 @@ class GqaLxmert(datasets.GeneratorBasedBuilder):
89
  """Returns SplitGenerators."""
90
  dl_dir = dl_manager.download_and_extract(_URLS)
91
  self.ans2label = json.load(open(dl_dir["ans2label"]))
92
- self.id2features = self._load_features(os.path.join(dl_dir["feat"], _FEAT_PATH))
 
93
 
94
  return [
95
  datasets.SplitGenerator(
96
  name=datasets.Split.TRAIN,
97
- gen_kwargs={"filepath": dl_dir["train"]},
98
  ),
99
  datasets.SplitGenerator(
100
  name=datasets.Split.VALIDATION,
101
- gen_kwargs={"filepath": dl_dir["dev"]},
 
 
 
 
102
  ),
103
  ]
104
 
@@ -127,13 +135,25 @@ class GqaLxmert(datasets.GeneratorBasedBuilder):
127
  normalized_boxes[:, (1, 3)] /= img_h
128
  return normalized_boxes
129
 
130
- def _generate_examples(self, filepath):
131
  """ Yields examples as (key, example) tuples."""
132
  with open(filepath, encoding="utf-8") as f:
133
  gqa = json.load(f)
134
  for id_, d in enumerate(gqa):
135
- img_features = self.id2features[d["img_id"]]
136
- label = self.ans2label[next(iter(d["label"]))]
 
 
 
 
 
 
 
 
 
 
 
 
137
  yield id_, {
138
  "question": d["sent"],
139
  "question_id": d["question_id"],
 
44
 
45
  _URLS = {
46
  "train": "https://nlp.cs.unc.edu/data/lxmert_data/gqa/train.json",
47
+ "val": "https://nlp.cs.unc.edu/data/lxmert_data/gqa/valid.json",
48
+ "trainval_feat": "https://nlp.cs.unc.edu/data/lxmert_data/vg_gqa_imgfeat/vg_gqa_obj36.zip",
49
+ "test": "https://nlp.cs.unc.edu/data/lxmert_data/gqa/testdev.json",
50
+ "test_feat": "https://nlp.cs.unc.edu/data/lxmert_data/vg_gqa_imgfeat/gqa_testdev_obj36.zip",
51
  "ans2label": "https://raw.githubusercontent.com/airsplay/lxmert/master/data/gqa/trainval_ans2label.json",
52
  }
53
 
54
+ TRAINVAL_FEAT_PATH = "vg_gqa_imgfeat/vg_gqa_obj36.tsv"
55
+ TEST_FEAT_PATH = "vg_gqa_imgfeat/gqa_testdev_obj36.tsv"
56
 
57
  FIELDNAMES = [
58
  "img_id", "img_h", "img_w", "objects_id", "objects_conf", "attrs_id", "attrs_conf", "num_boxes", "boxes", "features"
 
92
  """Returns SplitGenerators."""
93
  dl_dir = dl_manager.download_and_extract(_URLS)
94
  self.ans2label = json.load(open(dl_dir["ans2label"]))
95
+ self.trainval_id2features = self._load_features(os.path.join(dl_dir["trainval_feat"], TRAINVAL_FEAT_PATH))
96
+ self.test_id2features = self._load_features(os.path.join(dl_dir["test_feat"], TEST_FEAT_PATH))
97
 
98
  return [
99
  datasets.SplitGenerator(
100
  name=datasets.Split.TRAIN,
101
+ gen_kwargs={"filepath": dl_dir["train"], "testset": False},
102
  ),
103
  datasets.SplitGenerator(
104
  name=datasets.Split.VALIDATION,
105
+ gen_kwargs={"filepath": dl_dir["val"], "testset": False},
106
+ ),
107
+ datasets.SplitGenerator(
108
+ name=datasets.Split.TEST,
109
+ gen_kwargs={"filepath": dl_dir["test"], "testset": True},
110
  ),
111
  ]
112
 
 
135
  normalized_boxes[:, (1, 3)] /= img_h
136
  return normalized_boxes
137
 
138
+ def _generate_examples(self, filepath, testset=False):
139
  """ Yields examples as (key, example) tuples."""
140
  with open(filepath, encoding="utf-8") as f:
141
  gqa = json.load(f)
142
  for id_, d in enumerate(gqa):
143
+ # test_id2features only contains features of a subset of samples in testdev.json
144
+ if testset:
145
+ try:
146
+ img_features = self.test_id2features[d["img_id"]]
147
+ except KeyError:
148
+ continue
149
+ label_key = next(iter(d["label"]))
150
+ if label_key not in self.ans2label:
151
+ print ("Ignored one sample because of unseen label.")
152
+ continue
153
+ label = self.ans2label[label_key]
154
+ else:
155
+ img_features = self.trainval_id2features[d["img_id"]]
156
+ label = self.ans2label[next(iter(d["label"]))]
157
  yield id_, {
158
  "question": d["sent"],
159
  "question_id": d["question_id"],