Datasets:
File size: 4,685 Bytes
d6dd84c 4209476 d6dd84c 4209476 d6dd84c 4209476 d6dd84c 26f3452 d6dd84c df05f50 d6dd84c df05f50 d6dd84c e82061a d6dd84c df05f50 d6dd84c df05f50 d6dd84c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 |
import os
import datasets
import pandas as pd
_CITATION = """
@article{sarti-etal-2022-divemt,
title={{DivEMT}: Neural Machine Translation Post-Editing Effort Across Typologically Diverse Languages},
author={Sarti, Gabriele and Bisazza, Arianna and Guerberof Arenas, Ana and Toral, Antonio},
journal={ArXiv preprint 2205.12215},
url={https://arxiv.org/abs/2205.12215},
year={2022},
month={may}
}
"""
_DESCRIPTION = """\
DivEMT is the first publicly available post-editing study of Neural Machine Translation (NMT) over a typologically diverse set of target languages. Using a strictly controlled setup, 18 professional translators were instructed to translate or post-edit the same set of English documents into Arabic, Dutch, Italian, Turkish, Ukrainian, and Vietnamese. During the process, their edits, keystrokes, editing times, pauses, and perceived effort were logged, enabling an in-depth, cross-lingual evaluation of NMT quality and its post-editing process.
"""
_HOMEPAGE = "https://github.com/gsarti/divemt"
_LICENSE = "GNU General Public License v3.0"
_ROOT_PATH = "https://raw.githubusercontent.com/gsarti/divemt/main/data/"
_PATHS = {
"main": os.path.join(_ROOT_PATH, "main.tsv"),
"warmup": os.path.join(_ROOT_PATH, "warmup.tsv"),
}
_ALL_FIELDS = ['unit_id', 'flores_id', 'item_id', 'subject_id', 'task_type',
'translation_type', 'src_len_chr', 'mt_len_chr', 'tgt_len_chr',
'src_len_wrd', 'mt_len_wrd', 'tgt_len_wrd', 'edit_time', 'k_total',
'k_letter', 'k_digit', 'k_white', 'k_symbol', 'k_nav', 'k_erase',
'k_copy', 'k_cut', 'k_paste', 'k_do', 'n_pause_geq_300',
'len_pause_geq_300', 'n_pause_geq_1000', 'len_pause_geq_1000',
'event_time', 'num_annotations', 'last_modification_time', 'n_insert',
'n_delete', 'n_substitute', 'n_shift', 'tot_shifted_words', 'tot_edits',
'hter', 'cer', 'bleu', 'chrf', 'lang_id', 'doc_id', 'time_s', 'time_m',
'time_h', 'time_per_char', 'time_per_word', 'key_per_char',
'words_per_hour', 'words_per_minute', 'per_subject_visit_order',
'src_text', 'mt_text', 'tgt_text', 'aligned_edit'
]
_FLOAT_FIELDS = ["edit_time", "bleu", "chrf", "hter", "n_insert", "n_delete", "n_substitute",
"n_shift", "time_s", "time_m", "time_h", 'time_per_char', 'time_per_word', 'key_per_char',
'words_per_hour', 'words_per_minute', 'tot_shifted_words', 'tot_edits', "mt_len_chr",
"mt_len_wrd", "cer"
]
_STR_FIELDS = ["unit_id", "item_id", "subject_id", "lang_id", "task_type", "translation_type",
"src_text", "mt_text", "tgt_text", "aligned_edit"
]
class DivEMTConfig(datasets.BuilderConfig):
"""BuilderConfig for the DivEMT Dataset."""
def __init__(
self,
features,
**kwargs,
):
"""
Args:
features: `list[string]`, list of the features that will appear in the
feature dict. Should not include "label".
**kwargs: keyword arguments forwarded to super.
"""
super().__init__(version=datasets.Version("1.0.0"), **kwargs)
self.features = features
class DivEMT(datasets.GeneratorBasedBuilder):
VERSION = datasets.Version("1.0.0")
BUILDER_CONFIGS = [
DivEMTConfig(
name=name,
features=_ALL_FIELDS,
)
for name in ["warmup", "main"]
]
DEFAULT_CONFIG_NAME = "main"
def _info(self):
features = {feature: datasets.Value("int32") for feature in self.config.features}
for field in _STR_FIELDS:
if field in self.config.features:
features[field] = datasets.Value("string")
for field in _FLOAT_FIELDS:
if field in self.config.features:
features[field] = datasets.Value("float32")
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(features),
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(self, dl_manager):
"""Returns SplitGenerators."""
dl_dir = dl_manager.download_and_extract(_PATHS[self.config.name])
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"filepath": dl_dir,
"features": self.config.features,
},
)
]
def _generate_examples(self, filepath: str, features):
"""Yields examples as (key, example) tuples."""
data = pd.read_csv(filepath, sep="\t")
data = data[features]
for id_, row in data.iterrows():
yield id_, row.to_dict() |