File size: 5,422 Bytes
a013352 ca07c0a a013352 109b7ff ca07c0a 109b7ff a013352 109b7ff ca07c0a a013352 109b7ff a013352 109b7ff ca07c0a a013352 ca07c0a a013352 109b7ff ca07c0a a013352 ca07c0a eb31d5a ca07c0a a013352 726d3e2 a013352 109b7ff a013352 ca07c0a a013352 ca07c0a a013352 109b7ff a013352 c1a6c46 a013352 0d0cf10 ca07c0a a013352 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 |
import os
import datasets
import pandas as pd
_CITATION = """No citation information available."""
_DESCRIPTION = """\
This dataset contains a sample of sentences taken from the FLORES-101 dataset that were either translated
from scratch or post-edited from an existing automatic translation by three human translators.
Translation were performed for the English-Italian language pair, and translators' behavioral data
(keystrokes, pauses, editing times) were collected using the PET platform.
"""
_HOMEPAGE = "https://www.rug.nl/masters/information-science/?lang=en"
_LICENSE = "Sharing and publishing of the data is not allowed at the moment."
_PATHS = {
"full": os.path.join("IK_NLP_22_PESTYLE", "train.tsv"),
"mask_subject": os.path.join("IK_NLP_22_PESTYLE", "test.tsv"),
"mask_modality": os.path.join("IK_NLP_22_PESTYLE", "test.tsv"),
"mask_time": os.path.join("IK_NLP_22_PESTYLE", "test.tsv")
}
_ALL_FIELDS = [
"item_id", "subject_id", "modality",
"src_text", "mt_text", "tgt_text",
"edit_time", "k_total", "k_letter", "k_digit", "k_white", "k_symbol", "k_nav", "k_erase",
"k_copy", "k_cut", "k_paste", "n_pause_geq_300", "len_pause_geq_300",
"n_pause_geq_1000", "len_pause_geq_1000", "num_annotations",
"n_insert", "n_delete", "n_substitute", "n_shift", "bleu", "chrf", "ter", "aligned_edit"
]
_FIELDS_MASK_SUBJECT = [f for f in _ALL_FIELDS if f not in ["subject_id"]]
_FIELDS_MASK_MODALITY = [f for f in _ALL_FIELDS if f not in [
"modality", "mt_text", "n_insert", "n_delete", "n_substitute",
"n_shift", "ter", "bleu", "chrf", "aligned_edit"
]]
_FIELDS_MASK_TIME = [f for f in _ALL_FIELDS if f not in [
"edit_time", "n_pause_geq_300", "len_pause_geq_300",
"n_pause_geq_1000", "len_pause_geq_1000"
]]
_DICT_FIELDS = {
"full": _ALL_FIELDS,
"mask_subject": _FIELDS_MASK_SUBJECT,
"mask_modality": _FIELDS_MASK_MODALITY,
"mask_time": _FIELDS_MASK_TIME
}
class IkNlp22PEStyleConfig(datasets.BuilderConfig):
"""BuilderConfig for the IK NLP '22 Post-editing Stylometry Dataset."""
def __init__(
self,
features,
**kwargs,
):
"""
Args:
features: `list[string]`, list of the features that will appear in the
feature dict. Should not include "label".
**kwargs: keyword arguments forwarded to super.
"""
super().__init__(version=datasets.Version("1.0.0"), **kwargs)
self.features = features
class IkNlp22PEStyle(datasets.GeneratorBasedBuilder):
VERSION = datasets.Version("1.0.0")
BUILDER_CONFIGS = [
IkNlp22PEStyleConfig(
name=name,
features=fields,
)
for name, fields in _DICT_FIELDS.items()
]
DEFAULT_CONFIG_NAME = "full"
@property
def manual_download_instructions(self):
return (
"The access to the data is restricted to students of the IK MSc NLP 2022 course working on a related project."
"To load the data using this dataset, download and extract the IK_NLP_22_PESTYLE folder you were provided upon selecting the final project."
"After extracting it, the folder (referred to as root) must contain a IK_NLP_22_PESTYLE subfolder, containing train.tsv and test.tsv files."
f"Then, load the dataset with: `datasets.load_dataset('GroNLP/ik-nlp-22_pestyle', '{self.config.name}', data_dir='path/to/root/folder')`"
)
def _info(self):
features = {feature: datasets.Value("int32") for feature in self.config.features}
for field in ["subject_id", "modality", "src_text", "mt_text", "tgt_text", "aligned_edit"]:
if field in self.config.features:
features[field] = datasets.Value("string")
for field in ["edit_time", "bleu", "chrf", "ter", "n_insert", "n_delete", "n_substitute", "n_shift"]:
if field in self.config.features:
features[field] = datasets.Value("float32")
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(features),
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(self, dl_manager):
"""Returns SplitGenerators."""
data_dir = os.path.abspath(os.path.expanduser(dl_manager.manual_dir))
if not os.path.exists(data_dir):
raise FileNotFoundError(
"{} does not exist. Make sure you insert the unzipped IK_NLP_22_PESTYLE dir via "
"`datasets.load_dataset('GroNLP/ik-nlp-22_pestyle', data_dir=...)`"
"Manual download instructions: {}".format(
data_dir, self.manual_download_instructions
)
)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN if self.config.name == "full" else datasets.Split.TEST,
gen_kwargs={
"filepath": os.path.join(data_dir, _PATHS[self.config.name]),
"features": self.config.features,
},
)
]
def _generate_examples(self, filepath: str, features):
"""Yields examples as (key, example) tuples."""
data = pd.read_csv(filepath, sep="\t")
data = data[features]
for id_, row in data.iterrows():
yield id_, row.to_dict() |