Datasets:
Tasks:
Text Generation
Modalities:
Text
Formats:
parquet
Languages:
Japanese
Size:
10K - 100K
License:
File size: 2,713 Bytes
18b93c1 1255a23 18b93c1 a9f3e3a 18b93c1 a9f3e3a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 |
---
dataset_info:
features:
- name: message_tree_id
dtype: string
- name: prompter_message_id
dtype: string
- name: assistant_message_id
dtype: string
- name: instruction
dtype: string
- name: input
dtype: string
- name: output
dtype: string
- name: assistant_rank
dtype: float64
- name: assistant_detoxify
struct:
- name: identity_attack
dtype: float64
- name: insult
dtype: float64
- name: obscene
dtype: float64
- name: severe_toxicity
dtype: float64
- name: sexual_explicit
dtype: float64
- name: threat
dtype: float64
- name: toxicity
dtype: float64
- name: prompter_detoxify
struct:
- name: identity_attack
dtype: float64
- name: insult
dtype: float64
- name: obscene
dtype: float64
- name: severe_toxicity
dtype: float64
- name: sexual_explicit
dtype: float64
- name: threat
dtype: float64
- name: toxicity
dtype: float64
- name: assistant_labels
struct:
- name: count
sequence: int32
- name: name
sequence: string
- name: value
sequence: float64
- name: prompter_labels
struct:
- name: count
sequence: int32
- name: name
sequence: string
- name: value
sequence: float64
splits:
- name: train
num_bytes: 24671269
num_examples: 12659
download_size: 8255918
dataset_size: 24671269
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
license: apache-2.0
task_categories:
- text-generation
language:
- ja
tags:
- self-rewarding
- oasst1
size_categories:
- 1K<n<10K
---
# Dataset Card for Dataset Name
<!-- Provide a quick summary of the dataset. -->
- [kunishou/oasst1-89k-ja](https://huggingface.co/datasets/kunishou/oasst1-89k-ja)
- [OpenAssistant/oasst1](https://huggingface.co/datasets/OpenAssistant/oasst1)
を元に、self-rewardingのEFT(Evaluation Fine-Tuning data)の元データを作成しました。
この後に、学習させたいモデルを使ってLLM-as-a-Judgeを行います。
Self-rewardingの論文では最終的に train: 1,630 records, test: 531 records に絞り込んでいます。
## Dataset Details
### Dataset Description
<!-- Provide a longer summary of what this dataset is. -->
- **Curated by:** [HachiML](https://huggingface.co/HachiML)
- **Language(s) (NLP):** Japanese
- **License:** Apache-2.0
## Filtering Rule
以下のルールで絞り込んでいます。
- First Conversational Turn
- Single Turn Conversation
- 3パターン以上の回答を持つ
- 同一のparent_idを持つ回答パターンでrankに被りがない |