Datasets:

Modalities:
Image
Text
Formats:
parquet
ArXiv:
Libraries:
Datasets
Dask
License:
File size: 8,414 Bytes
5dff2b4
 
07510b7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b10b08a
 
e2dc14f
b10b08a
0085dfe
 
 
 
 
1657ab5
 
 
 
 
b10b08a
 
0085dfe
 
e2dc14f
 
 
 
 
5dff2b4
e2dc14f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
---
license: cc-by-4.0
dataset_info:
  features:
  - name: age_unknown
    dtype:
      class_label:
        names:
          '0': 'No'
          '1': 'Yes'
  - name: body_part
    dtype:
      class_label:
        names:
          '0': 'No'
          '1': 'Yes'
  - name: bright
    dtype:
      class_label:
        names:
          '0': 'No'
          '1': 'Yes'
  - name: dark
    dtype:
      class_label:
        names:
          '0': 'No'
          '1': 'Yes'
  - name: depiction
    dtype:
      class_label:
        names:
          '0': 'No'
          '1': 'Yes'
  - name: far
    dtype:
      class_label:
        names:
          '0': 'No'
          '1': 'Yes'
  - name: filename
    dtype: string
  - name: gender_unknown
    dtype:
      class_label:
        names:
          '0': 'No'
          '1': 'Yes'
  - name: image
    dtype: image
  - name: medium_distance
    dtype:
      class_label:
        names:
          '0': 'No'
          '1': 'Yes'
  - name: middle_age
    dtype:
      class_label:
        names:
          '0': 'No'
          '1': 'Yes'
  - name: near
    dtype:
      class_label:
        names:
          '0': 'No'
          '1': 'Yes'
  - name: non-person_depiction
    dtype:
      class_label:
        names:
          '0': 'No'
          '1': 'Yes'
  - name: non-person_non-depiction
    dtype:
      class_label:
        names:
          '0': 'No'
          '1': 'Yes'
  - name: normal_lighting
    dtype:
      class_label:
        names:
          '0': 'No'
          '1': 'Yes'
  - name: older
    dtype:
      class_label:
        names:
          '0': 'No'
          '1': 'Yes'
  - name: person
    dtype:
      class_label:
        names:
          '0': 'No'
          '1': 'Yes'
  - name: person_depiction
    dtype:
      class_label:
        names:
          '0': 'No'
          '1': 'Yes'
  - name: predominantly_female
    dtype:
      class_label:
        names:
          '0': 'No'
          '1': 'Yes'
  - name: predominantly_male
    dtype:
      class_label:
        names:
          '0': 'No'
          '1': 'Yes'
  - name: young
    dtype:
      class_label:
        names:
          '0': 'No'
          '1': 'Yes'
  splits:
  - name: test
    num_bytes: 15119280526
    num_examples: 53304
  - name: validation
    num_bytes: 5013154770.625
    num_examples: 17627
  download_size: 20127967346
  dataset_size: 20132435296.625
configs:
- config_name: default
  data_files:
  - split: train_quality
    path: data/train_quality*
  - split: test
    path: data/test-*
  - split: validation
    path: data/validation-*
task_categories:
- image-classification
pretty_name: Wake Vision
size_categories:
- 1M<n<10M
---

# Dataset Card for Wake Vision


## Dataset Details

### Dataset Description

<!-- Provide a longer summary of what this dataset is. -->

Paper abstract: 

>Abstract. Machine learning applications on extremely low-power de-
vices, commonly referred to as tiny machine learning (TinyML), promises
a smarter and more connected world. However, the advancement of cur-
rent TinyML research is hindered by the limited size and quality of per-
tinent datasets. To address this challenge, we introduce Wake Vision, a
large-scale, diverse dataset tailored for person detection—the canonical
task for TinyML visual sensing. Wake Vision comprises over 6 million
images, which is a hundredfold increase compared to the previous stan-
dard, and has undergone thorough quality filtering. Using Wake Vision
for training results in a 2.41% increase in accuracy compared to the estab-
lished benchmark. Alongside the dataset, we provide a collection of five
detailed benchmark sets that assess model performance on specific seg-
ments of the test data, such as varying lighting conditions, distances from
the camera, and demographic characteristics of subjects. These novel
fine-grained benchmarks facilitate the evaluation of model quality in chal-
lenging real-world scenarios that are often ignored when focusing solely
on overall accuracy. Through an evaluation of a MobileNetV2 TinyML
model on the benchmarks, we show that the input resolution plays a
more crucial role than the model width in detecting distant subjects and
that the impact of quantization on model robustness is minimal, thanks
to the dataset quality. These findings underscore the importance of a de-
tailed evaluation to identify essential factors for model development. The
dataset, benchmark suite, code, and models are publicly available under
the CC-BY 4.0 license, enabling their use for commercial use cases

- **Curated by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]

### Dataset Sources [optional]

<!-- Provide the basic links for the dataset. -->

- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]

## Uses

<!-- Address questions around how the dataset is intended to be used. -->

### Direct Use

<!-- This section describes suitable use cases for the dataset. -->

[More Information Needed]

### Out-of-Scope Use

<!-- This section addresses misuse, malicious use, and uses that the dataset will not work well for. -->

[More Information Needed]

## Dataset Structure

<!-- This section provides a description of the dataset fields, and additional information about the dataset structure such as criteria used to create the splits, relationships between data points, etc. -->

[More Information Needed]

## Dataset Creation

### Curation Rationale

<!-- Motivation for the creation of this dataset. -->

[More Information Needed]

### Source Data

<!-- This section describes the source data (e.g. news text and headlines, social media posts, translated sentences, ...). -->

#### Data Collection and Processing

<!-- This section describes the data collection and processing process such as data selection criteria, filtering and normalization methods, tools and libraries used, etc. -->

[More Information Needed]

#### Who are the source data producers?

<!-- This section describes the people or systems who originally created the data. It should also include self-reported demographic or identity information for the source data creators if this information is available. -->

[More Information Needed]

### Annotations [optional]

<!-- If the dataset contains annotations which are not part of the initial data collection, use this section to describe them. -->

#### Annotation process

<!-- This section describes the annotation process such as annotation tools used in the process, the amount of data annotated, annotation guidelines provided to the annotators, interannotator statistics, annotation validation, etc. -->

[More Information Needed]

#### Who are the annotators?

<!-- This section describes the people or systems who created the annotations. -->

[More Information Needed]

#### Personal and Sensitive Information

<!-- State whether the dataset contains data that might be considered personal, sensitive, or private (e.g., data that reveals addresses, uniquely identifiable names or aliases, racial or ethnic origins, sexual orientations, religious beliefs, political opinions, financial or health data, etc.). If efforts were made to anonymize the data, describe the anonymization process. -->

[More Information Needed]

## Bias, Risks, and Limitations

<!-- This section is meant to convey both technical and sociotechnical limitations. -->

[More Information Needed]

### Recommendations

<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->


## Citation

<!-- If there is a paper or blog post introducing the dataset, the APA and Bibtex information for that should go in this section. -->

**BibTeX:**

```bibtex
@misc{banbury2024wake,
      title={Wake Vision: A Large-scale, Diverse Dataset and Benchmark Suite for TinyML Person Detection}, 
      author={Colby Banbury and Emil Njor and Matthew Stewart and Pete Warden and Manjunath Kudlur and Nat Jeffries and Xenofon Fafoutis and Vijay Janapa Reddi},
      year={2024},
      eprint={2405.00892},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}
```

[More Information Needed]

## Dataset Card Contact

[More Information Needed]