File size: 8,803 Bytes
430304e beadddb 430304e 247ecfc 430304e 247ecfc 430304e 247ecfc 430304e 247ecfc 430304e 247ecfc 430304e 247ecfc 430304e 247ecfc 430304e 247ecfc 430304e 33b70ff 430304e beadddb 430304e beadddb 430304e beadddb d7049d6 beadddb 87b1c21 d7049d6 bb3a1b6 87b1c21 beadddb 87b1c21 d7049d6 beadddb d7049d6 beadddb 430304e bb3a1b6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 |
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""NaijaSenti: A Nigerian Twitter Sentiment Corpus for Multilingual Sentiment Analysis"""
_HOMEPAGE = "https://github.com/hausanlp/NaijaSenti"
_DESCRIPTION = """\
Naija-Stopwords is a part of the Naija-Senti project. It is a list of collected stopwords from the four most widely spoken languages in Nigeria — Hausa, Igbo, Nigerian-Pidgin, and Yorùbá.
"""
_CITATION = """\
@inproceedings{muhammad-etal-2022-naijasenti,
title = "{N}aija{S}enti: A {N}igerian {T}witter Sentiment Corpus for Multilingual Sentiment Analysis",
author = "Muhammad, Shamsuddeen Hassan and
Adelani, David Ifeoluwa and
Ruder, Sebastian and
Ahmad, Ibrahim Sa{'}id and
Abdulmumin, Idris and
Bello, Bello Shehu and
Choudhury, Monojit and
Emezue, Chris Chinenye and
Abdullahi, Saheed Salahudeen and
Aremu, Anuoluwapo and
Jorge, Al{\"\i}pio and
Brazdil, Pavel",
booktitle = "Proceedings of the Thirteenth Language Resources and Evaluation Conference",
month = jun,
year = "2022",
address = "Marseille, France",
publisher = "European Language Resources Association",
url = "https://aclanthology.org/2022.lrec-1.63",
pages = "590--602",
}
"""
import textwrap
import pandas as pd
import datasets
#LANGUAGES = ["hausa", "igbo", "yoruba"]
TYPES = ['manual-sentiment', 'translated-sentiment', 'translated-emotion']
class NaijaLexiconsConfig(datasets.BuilderConfig):
"""BuilderConfig for NaijaLexicons"""
def __init__(
self,
text_features,
label_column,
label_classes,
hau_url,
ibo_url,
yor_url,
citation,
**kwargs,
):
"""BuilderConfig for NaijaLexicons.
Args:
text_features: `dict[string]`, map from the name of the feature
dict for each text field to the name of the column in the txt/csv/tsv file
label_column: `string`, name of the column in the txt/csv/tsv file corresponding
to the label
label_classes: `list[string]`, the list of classes if the label is categorical
train_url: `string`, url to train file from
valid_url: `string`, url to valid file from
test_url: `string`, url to test file from
citation: `string`, citation for the data set
**kwargs: keyword arguments forwarded to super.
"""
super(NaijaLexiconsConfig, self).__init__(version=datasets.Version("1.0.0", ""), **kwargs)
self.text_features = text_features
self.label_column = label_column
self.label_classes = label_classes
self.hau_url = hau_url
self.ibo_url = ibo_url
self.yor_url = yor_url
self.citation = citation
class NaijaLexicons(datasets.GeneratorBasedBuilder):
"""NaijaLexicons benchmark"""
BUILDER_CONFIGS = []
for t in TYPES:
if t == 'translated-emotion':
BUILDER_CONFIGS.append(
NaijaLexiconsConfig(
name=t,
description=textwrap.dedent(
f"""{_DESCRIPTION}"""
),
text_features={"word": "word", "machine": "machine", "human": "human", "emotion_intensity_score": "emotion_intensity_score"},
label_classes=["surprise", "fear", "anticipation", "anger", "joy", "trust", "disgust", "sadness"],
label_column="label",
hau_url=f"https://raw.githubusercontent.com/hausanlp/NaijaSenti/main/data/lexicons/{t}/huggingface/hausa.csv",
ibo_url=f"https://raw.githubusercontent.com/hausanlp/NaijaSenti/main/data/lexicons/{t}/huggingface/igbo.csv",
yor_url=f"https://raw.githubusercontent.com/hausanlp/NaijaSenti/main/data/lexicons/{t}/huggingface/yoruba.csv",
citation=textwrap.dedent(
f"""{_CITATION}"""
),
),
)
elif t == 'translated-sentiment':
BUILDER_CONFIGS.append(
NaijaLexiconsConfig(
name=t,
description=textwrap.dedent(
f"""{_DESCRIPTION}"""
),
text_features={"word": "word", "machine": "machine", "human": "human"},
label_classes=["positive", "negative"],
label_column="label",
hau_url=f"https://raw.githubusercontent.com/hausanlp/NaijaSenti/main/data/lexicons/{t}/huggingface/hausa.csv",
ibo_url=f"https://raw.githubusercontent.com/hausanlp/NaijaSenti/main/data/lexicons/{t}/huggingface/igbo.csv",
yor_url=f"https://raw.githubusercontent.com/hausanlp/NaijaSenti/main/data/lexicons/{t}/huggingface/yoruba.csv",
citation=textwrap.dedent(
f"""{_CITATION}"""
),
),
)
else:
BUILDER_CONFIGS.append(
NaijaLexiconsConfig(
name=t,
description=textwrap.dedent(
f"""{_DESCRIPTION}"""
),
text_features={"word": "word"},
label_classes=["positive", "negative"],
label_column="label",
hau_url=f"https://raw.githubusercontent.com/hausanlp/NaijaSenti/main/data/lexicons/{t}/huggingface/hausa.csv",
ibo_url=f"https://raw.githubusercontent.com/hausanlp/NaijaSenti/main/data/lexicons/{t}/huggingface/igbo.csv",
yor_url=f"https://raw.githubusercontent.com/hausanlp/NaijaSenti/main/data/lexicons/{t}/huggingface/yoruba.csv",
citation=textwrap.dedent(
f"""{_CITATION}"""
),
),
)
def _info(self):
features = {text_feature: datasets.Value("string") for text_feature in self.config.text_features}
features["label"] = datasets.features.ClassLabel(names=self.config.label_classes)
return datasets.DatasetInfo(
description=self.config.description,
features=datasets.Features(features),
citation=self.config.citation,
)
def _split_generators(self, dl_manager):
"""Returns SplitGenerators."""
hau_path = dl_manager.download_and_extract(self.config.hau_url)
ibo_path = dl_manager.download_and_extract(self.config.ibo_url)
yor_path = dl_manager.download_and_extract(self.config.yor_url)
return [
datasets.SplitGenerator(name="hausa", gen_kwargs={"filepath": hau_path}),
datasets.SplitGenerator(name="igbo", gen_kwargs={"filepath": ibo_path}),
datasets.SplitGenerator(name="yoruba", gen_kwargs={"filepath": yor_path})
]
def _generate_examples(self, filepath):
# load the dataset
df = pd.read_csv(filepath)
print("-"*100)
print(df.head())
print("-"*100)
if self.config.name == "translated-sentiment":
for id_, row in df.iterrows():
word = row["word"]
machine = row["machine"]
human = row["human"]
label = row["label"]
yield id_, {"word": word, "machine translation": machine, "human translation": human, "label": label}
elif self.config.name == "manual-sentiment":
for id_, row in df.iterrows():
word = row["word"]
label = row["label"]
yield id_, {"word": word, "label": label}
else:
for id_, row in df.iterrows():
word = row["word"]
machine = row["machine"]
human = row["human"]
label = row["label"]
emotion_intensity_score = row["emotion_intensity_score"]
yield id_, {"word": word, "machine translation": machine, "human translation": human, "label": label, "emotion_intensity_score": emotion_intensity_score} |