|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""NaijaSenti: A Nigerian Twitter Sentiment Corpus for Multilingual Sentiment Analysis""" |
|
|
|
|
|
|
|
_HOMEPAGE = "https://github.com/hausanlp/NaijaSenti" |
|
|
|
_DESCRIPTION = """\ |
|
NaijaSenti is the first large-scale human-annotated Twitter sentiment dataset for the four most widely spoken languages in Nigeria — Hausa, Igbo, Nigerian-Pidgin, and Yorùbá — consisting of around 30,000 annotated tweets per language, including a significant fraction of code-mixed tweets. |
|
""" |
|
|
|
|
|
_CITATION = """\ |
|
@inproceedings{muhammad-etal-2022-naijasenti, |
|
title = "{N}aija{S}enti: A {N}igerian {T}witter Sentiment Corpus for Multilingual Sentiment Analysis", |
|
author = "Muhammad, Shamsuddeen Hassan and |
|
Adelani, David Ifeoluwa and |
|
Ruder, Sebastian and |
|
Ahmad, Ibrahim Sa{'}id and |
|
Abdulmumin, Idris and |
|
Bello, Bello Shehu and |
|
Choudhury, Monojit and |
|
Emezue, Chris Chinenye and |
|
Abdullahi, Saheed Salahudeen and |
|
Aremu, Anuoluwapo and |
|
Jorge, Al{\'\i}pio and |
|
Brazdil, Pavel", |
|
booktitle = "Proceedings of the Thirteenth Language Resources and Evaluation Conference", |
|
month = jun, |
|
year = "2022", |
|
address = "Marseille, France", |
|
publisher = "European Language Resources Association", |
|
url = "https://aclanthology.org/2022.lrec-1.63", |
|
pages = "590--602", |
|
} |
|
""" |
|
|
|
|
|
import csv |
|
import textwrap |
|
import pandas as pd |
|
|
|
import datasets |
|
|
|
LANGUAGES = ['hau', 'ibo', 'yor', 'pcm'] |
|
|
|
class NaijaSentiConfig(datasets.BuilderConfig): |
|
"""BuilderConfig for NaijaSenti""" |
|
|
|
def __init__( |
|
self, |
|
text_features, |
|
label_column, |
|
label_classes, |
|
train_url, |
|
valid_url, |
|
test_url, |
|
citation, |
|
**kwargs, |
|
): |
|
"""BuilderConfig for NaijaSenti. |
|
|
|
Args: |
|
text_features: `dict[string]`, map from the name of the feature |
|
dict for each text field to the name of the column in the txt/csv/tsv file |
|
label_column: `string`, name of the column in the txt/csv/tsv file corresponding |
|
to the label |
|
label_classes: `list[string]`, the list of classes if the label is categorical |
|
train_url: `string`, url to train file from |
|
valid_url: `string`, url to valid file from |
|
test_url: `string`, url to test file from |
|
citation: `string`, citation for the data set |
|
**kwargs: keyword arguments forwarded to super. |
|
""" |
|
super(NaijaSentiConfig, self).__init__(version=datasets.Version("1.0.0", ""), **kwargs) |
|
self.text_features = text_features |
|
self.label_column = label_column |
|
self.label_classes = label_classes |
|
self.train_url = train_url |
|
self.valid_url = valid_url |
|
self.test_url = test_url |
|
self.citation = citation |
|
|
|
|
|
class NaijaSenti(datasets.GeneratorBasedBuilder): |
|
"""NaijaSenti benchmark""" |
|
|
|
BUILDER_CONFIGS = [] |
|
|
|
for lang in LANGUAGES: |
|
BUILDER_CONFIGS.append( |
|
NaijaSentiConfig( |
|
name=lang, |
|
description=textwrap.dedent( |
|
f"""\ |
|
{lang} dataset.""" |
|
), |
|
text_features={"tweet": "tweet"}, |
|
label_classes=["positive", "neutral", "negative"], |
|
label_column="label", |
|
train_url=f"https://raw.githubusercontent.com/hausanlp/NaijaSenti/main/data/annotated_tweets/{lang}/train.tsv", |
|
valid_url=f"https://raw.githubusercontent.com/hausanlp/NaijaSenti/main/data/annotated_tweets/{lang}/dev.tsv", |
|
test_url=f"https://raw.githubusercontent.com/hausanlp/NaijaSenti/main/data/annotated_tweets/{lang}/test.tsv", |
|
citation=textwrap.dedent( |
|
f"""\ |
|
{lang} citation""" |
|
), |
|
), |
|
) |
|
|
|
def _info(self): |
|
features = {text_feature: datasets.Value("string") for text_feature in self.config.text_features} |
|
features["label"] = datasets.features.ClassLabel(names=self.config.label_classes) |
|
|
|
return datasets.DatasetInfo( |
|
description=self.config.description, |
|
features=datasets.Features(features), |
|
citation=self.config.citation, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
"""Returns SplitGenerators.""" |
|
train_path = dl_manager.download_and_extract(self.config.train_url) |
|
valid_path = dl_manager.download_and_extract(self.config.valid_url) |
|
test_path = dl_manager.download_and_extract(self.config.test_url) |
|
|
|
return [ |
|
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": train_path}), |
|
datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": valid_path}), |
|
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": test_path}), |
|
] |
|
|
|
def _generate_examples(self, filepath): |
|
df = pd.read_csv(filepath, sep='\t') |
|
|
|
print('-'*100) |
|
print(df.head()) |
|
print('-'*100) |
|
|
|
for id_, row in df.iterrows(): |
|
tweet = row["tweet"] |
|
label = row["label"] |
|
|
|
yield id_, {"tweet": tweet, "label": label} |
|
|