Datasets:

Modalities:
Text
Formats:
parquet
Libraries:
Datasets
Dask
License:
File size: 8,046 Bytes
546b667
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4eac036
 
 
 
 
 
 
 
 
 
 
 
 
0e8cd1e
4eac036
 
 
0e8cd1e
4eac036
 
 
 
 
 
 
 
 
 
 
 
 
546b667
 
 
 
 
 
 
4eac036
546b667
 
 
 
 
 
 
4eac036
546b667
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7bf0119
 
546b667
 
 
ef139ce
546b667
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ef139ce
546b667
 
 
 
 
 
 
 
 
 
ef139ce
546b667
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


import os
import xml.etree.ElementTree as ET

import datasets


# Find for instance the citation on arxiv or on the dataset repo/website
_CITATION = """\
@inproceedings{koehn-2005-europarl,
    title = "{E}uroparl: A Parallel Corpus for Statistical Machine Translation",
    author = "Koehn, Philipp",
    booktitle = "Proceedings of Machine Translation Summit X: Papers",
    month = sep # " 13-15",
    year = "2005",
    address = "Phuket, Thailand",
    url = "https://aclanthology.org/2005.mtsummit-papers.11",
    pages = "79--86",
}
@inproceedings{tiedemann-2012-parallel,
    title = "Parallel Data, Tools and Interfaces in {OPUS}",
    author = {Tiedemann, J{\\"o}rg},
    editor = "Calzolari, Nicoletta  and
      Choukri, Khalid  and
      Declerck, Thierry  and
      Do{\\u{g}}an, Mehmet U{\\u{g}}ur  and
      Maegaard, Bente  and
      Mariani, Joseph  and
      Moreno, Asuncion  and
      Odijk, Jan  and
      Piperidis, Stelios",
    booktitle = "Proceedings of the Eighth International Conference on Language Resources and Evaluation ({LREC}'12)",
    month = may,
    year = "2012",
    address = "Istanbul, Turkey",
    publisher = "European Language Resources Association (ELRA)",
    url = "http://www.lrec-conf.org/proceedings/lrec2012/pdf/463_Paper.pdf",
    pages = "2214--2218",
}"""

# You can copy an official description
_DESCRIPTION = """\
A parallel corpus extracted from the European Parliament web site by Philipp Koehn (University of Edinburgh). The main intended use is to aid statistical machine translation research.
"""

# Add a link to an official homepage for the dataset here
_HOMEPAGE = "https://opus.nlpl.eu/Europarl/corpus/version/Europarl"

#  Add the licence for the dataset here if you can find it
_LICENSE = """\
The data set comes with the same license
as the original sources.
Please, check the information about the source
that is given on
https://opus.nlpl.eu/Europarl/corpus/version/Europarl
"""

# The HuggingFace dataset library don't host the datasets but only point to the original files
# This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
LANGUAGES = [
    "bg",
    "cs",
    "da",
    "de",
    "el",
    "en",
    "es",
    "et",
    "fi",
    "fr",
    "hu",
    "it",
    "lt",
    "lv",
    "nl",
    "pl",
    "pt",
    "ro",
    "sk",
    "sl",
    "sv",
]

ALL_PAIRS = []
for i in range(len(LANGUAGES)):
    for j in range(i + 1, len(LANGUAGES)):
        ALL_PAIRS.append((LANGUAGES[i], LANGUAGES[j]))

_VERSION = "8.0.0"
_BASE_URL_DATASET = "https://object.pouta.csc.fi/OPUS-Europarl/v8/raw/{}.zip"
_BASE_URL_RELATIONS = "https://object.pouta.csc.fi/OPUS-Europarl/v8/xml/{}-{}.xml.gz"


class EuroparlBilingualConfig(datasets.BuilderConfig):
    """Slightly custom config to require source and target languages."""

    def __init__(self, *args, lang1=None, lang2=None, **kwargs):
        super().__init__(
            *args,
            name=f"{lang1}-{lang2}",
            **kwargs,
        )
        self.lang1 = lang1
        self.lang2 = lang2

    def _lang_pair(self):
        return (self.lang1, self.lang2)

    def _is_valid(self):
        return self._lang_pair() in ALL_PAIRS


class EuroparlBilingual(datasets.GeneratorBasedBuilder):
    """Europarl contains aligned sentences in multiple west language pairs."""

    VERSION = datasets.Version(_VERSION)

    BUILDER_CONFIG_CLASS = EuroparlBilingualConfig
    BUILDER_CONFIGS = [
        EuroparlBilingualConfig(lang1=lang1, lang2=lang2, version=datasets.Version(_VERSION))
        for lang1, lang2 in ALL_PAIRS[:5]
    ]

    def _info(self):
        """This method specifies the datasets.DatasetInfo object which contains informations and typings for the dataset."""
        features = datasets.Features(
            {
                "translation": datasets.Translation(languages=(self.config.lang1, self.config.lang2)),
            }
        )

        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=features,
            supervised_keys=None,
            homepage=_HOMEPAGE,
            license=_LICENSE,
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        """Returns SplitGenerators."""

        if not self.config._is_valid():
            raise ValueError(f"{self.config._lang_pair()} is not a supported language pair. Choose among: {ALL_PAIRS}")

        # download data files
        path_datafile_1 = dl_manager.download_and_extract(_BASE_URL_DATASET.format(self.config.lang1))
        path_datafile_2 = dl_manager.download_and_extract(_BASE_URL_DATASET.format(self.config.lang2))

        # download relations file
        path_relation_file = dl_manager.download_and_extract(
            _BASE_URL_RELATIONS.format(self.config.lang1, self.config.lang2)
        )

        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                # These kwargs will be passed to _generate_examples
                gen_kwargs={
                    "path_datafiles": (path_datafile_1, path_datafile_2),
                    "path_relation_file": path_relation_file,
                },
            )
        ]

    @staticmethod
    def _parse_xml_datafile(filepath):
        """
        Parse and return a Dict[sentence_id, text] representing data with the following structure:
        """
        document = ET.parse(filepath).getroot()
        return {tag.attrib["id"]: tag.text for tag in document.iter("s")}

    def _generate_examples(self, path_datafiles, path_relation_file):
        """Yields examples.
        In parenthesis the useful attributes

        Lang files XML
        - document
            - CHAPTER ('ID')
                - P ('id')
                    - s ('id')

        Relation file XML
        - cesAlign
            - linkGrp ('fromDoc', 'toDoc')
                - link ('xtargets': '1;1')
        """

        # my counter
        _id = 0
        relations_root = ET.parse(path_relation_file).getroot()

        for linkGroup in relations_root:
            # retrieve files and remove .gz extension because 'datasets' library already decompress them
            from_doc_dict = EuroparlBilingual._parse_xml_datafile(
                os.path.splitext(os.path.join(path_datafiles[0], "Europarl", "raw", linkGroup.attrib["fromDoc"]))[0]
            )

            to_doc_dict = EuroparlBilingual._parse_xml_datafile(
                os.path.splitext(os.path.join(path_datafiles[1], "Europarl", "raw", linkGroup.attrib["toDoc"]))[0]
            )

            for link in linkGroup:
                from_sentence_ids, to_sentence_ids = link.attrib["xtargets"].split(";")
                from_sentence_ids = [i for i in from_sentence_ids.split(" ") if i]
                to_sentence_ids = [i for i in to_sentence_ids.split(" ") if i]

                if not len(from_sentence_ids) or not len(to_sentence_ids):
                    continue

                # in rare cases, there is not entry for some key pairs
                sentence_lang1 = " ".join(from_doc_dict[i] for i in from_sentence_ids if i in from_doc_dict)
                sentence_lang2 = " ".join(to_doc_dict[i] for i in to_sentence_ids if i in to_doc_dict)

                yield _id, {"translation": {self.config.lang1: sentence_lang1, self.config.lang2: sentence_lang2}}
                _id += 1