Datasets:
File size: 8,046 Bytes
546b667 4eac036 0e8cd1e 4eac036 0e8cd1e 4eac036 546b667 4eac036 546b667 4eac036 546b667 7bf0119 546b667 ef139ce 546b667 ef139ce 546b667 ef139ce 546b667 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 |
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import xml.etree.ElementTree as ET
import datasets
# Find for instance the citation on arxiv or on the dataset repo/website
_CITATION = """\
@inproceedings{koehn-2005-europarl,
title = "{E}uroparl: A Parallel Corpus for Statistical Machine Translation",
author = "Koehn, Philipp",
booktitle = "Proceedings of Machine Translation Summit X: Papers",
month = sep # " 13-15",
year = "2005",
address = "Phuket, Thailand",
url = "https://aclanthology.org/2005.mtsummit-papers.11",
pages = "79--86",
}
@inproceedings{tiedemann-2012-parallel,
title = "Parallel Data, Tools and Interfaces in {OPUS}",
author = {Tiedemann, J{\\"o}rg},
editor = "Calzolari, Nicoletta and
Choukri, Khalid and
Declerck, Thierry and
Do{\\u{g}}an, Mehmet U{\\u{g}}ur and
Maegaard, Bente and
Mariani, Joseph and
Moreno, Asuncion and
Odijk, Jan and
Piperidis, Stelios",
booktitle = "Proceedings of the Eighth International Conference on Language Resources and Evaluation ({LREC}'12)",
month = may,
year = "2012",
address = "Istanbul, Turkey",
publisher = "European Language Resources Association (ELRA)",
url = "http://www.lrec-conf.org/proceedings/lrec2012/pdf/463_Paper.pdf",
pages = "2214--2218",
}"""
# You can copy an official description
_DESCRIPTION = """\
A parallel corpus extracted from the European Parliament web site by Philipp Koehn (University of Edinburgh). The main intended use is to aid statistical machine translation research.
"""
# Add a link to an official homepage for the dataset here
_HOMEPAGE = "https://opus.nlpl.eu/Europarl/corpus/version/Europarl"
# Add the licence for the dataset here if you can find it
_LICENSE = """\
The data set comes with the same license
as the original sources.
Please, check the information about the source
that is given on
https://opus.nlpl.eu/Europarl/corpus/version/Europarl
"""
# The HuggingFace dataset library don't host the datasets but only point to the original files
# This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
LANGUAGES = [
"bg",
"cs",
"da",
"de",
"el",
"en",
"es",
"et",
"fi",
"fr",
"hu",
"it",
"lt",
"lv",
"nl",
"pl",
"pt",
"ro",
"sk",
"sl",
"sv",
]
ALL_PAIRS = []
for i in range(len(LANGUAGES)):
for j in range(i + 1, len(LANGUAGES)):
ALL_PAIRS.append((LANGUAGES[i], LANGUAGES[j]))
_VERSION = "8.0.0"
_BASE_URL_DATASET = "https://object.pouta.csc.fi/OPUS-Europarl/v8/raw/{}.zip"
_BASE_URL_RELATIONS = "https://object.pouta.csc.fi/OPUS-Europarl/v8/xml/{}-{}.xml.gz"
class EuroparlBilingualConfig(datasets.BuilderConfig):
"""Slightly custom config to require source and target languages."""
def __init__(self, *args, lang1=None, lang2=None, **kwargs):
super().__init__(
*args,
name=f"{lang1}-{lang2}",
**kwargs,
)
self.lang1 = lang1
self.lang2 = lang2
def _lang_pair(self):
return (self.lang1, self.lang2)
def _is_valid(self):
return self._lang_pair() in ALL_PAIRS
class EuroparlBilingual(datasets.GeneratorBasedBuilder):
"""Europarl contains aligned sentences in multiple west language pairs."""
VERSION = datasets.Version(_VERSION)
BUILDER_CONFIG_CLASS = EuroparlBilingualConfig
BUILDER_CONFIGS = [
EuroparlBilingualConfig(lang1=lang1, lang2=lang2, version=datasets.Version(_VERSION))
for lang1, lang2 in ALL_PAIRS[:5]
]
def _info(self):
"""This method specifies the datasets.DatasetInfo object which contains informations and typings for the dataset."""
features = datasets.Features(
{
"translation": datasets.Translation(languages=(self.config.lang1, self.config.lang2)),
}
)
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
supervised_keys=None,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(self, dl_manager):
"""Returns SplitGenerators."""
if not self.config._is_valid():
raise ValueError(f"{self.config._lang_pair()} is not a supported language pair. Choose among: {ALL_PAIRS}")
# download data files
path_datafile_1 = dl_manager.download_and_extract(_BASE_URL_DATASET.format(self.config.lang1))
path_datafile_2 = dl_manager.download_and_extract(_BASE_URL_DATASET.format(self.config.lang2))
# download relations file
path_relation_file = dl_manager.download_and_extract(
_BASE_URL_RELATIONS.format(self.config.lang1, self.config.lang2)
)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
# These kwargs will be passed to _generate_examples
gen_kwargs={
"path_datafiles": (path_datafile_1, path_datafile_2),
"path_relation_file": path_relation_file,
},
)
]
@staticmethod
def _parse_xml_datafile(filepath):
"""
Parse and return a Dict[sentence_id, text] representing data with the following structure:
"""
document = ET.parse(filepath).getroot()
return {tag.attrib["id"]: tag.text for tag in document.iter("s")}
def _generate_examples(self, path_datafiles, path_relation_file):
"""Yields examples.
In parenthesis the useful attributes
Lang files XML
- document
- CHAPTER ('ID')
- P ('id')
- s ('id')
Relation file XML
- cesAlign
- linkGrp ('fromDoc', 'toDoc')
- link ('xtargets': '1;1')
"""
# my counter
_id = 0
relations_root = ET.parse(path_relation_file).getroot()
for linkGroup in relations_root:
# retrieve files and remove .gz extension because 'datasets' library already decompress them
from_doc_dict = EuroparlBilingual._parse_xml_datafile(
os.path.splitext(os.path.join(path_datafiles[0], "Europarl", "raw", linkGroup.attrib["fromDoc"]))[0]
)
to_doc_dict = EuroparlBilingual._parse_xml_datafile(
os.path.splitext(os.path.join(path_datafiles[1], "Europarl", "raw", linkGroup.attrib["toDoc"]))[0]
)
for link in linkGroup:
from_sentence_ids, to_sentence_ids = link.attrib["xtargets"].split(";")
from_sentence_ids = [i for i in from_sentence_ids.split(" ") if i]
to_sentence_ids = [i for i in to_sentence_ids.split(" ") if i]
if not len(from_sentence_ids) or not len(to_sentence_ids):
continue
# in rare cases, there is not entry for some key pairs
sentence_lang1 = " ".join(from_doc_dict[i] for i in from_sentence_ids if i in from_doc_dict)
sentence_lang2 = " ".join(to_doc_dict[i] for i in to_sentence_ids if i in to_doc_dict)
yield _id, {"translation": {self.config.lang1: sentence_lang1, self.config.lang2: sentence_lang2}}
_id += 1
|