Datasets:
File size: 6,941 Bytes
8f48d18 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 |
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""OPUS-100"""
import os
import datasets
_CITATION = """\
@misc{zhang2020improving,
title={Improving Massively Multilingual Neural Machine Translation and Zero-Shot Translation},
author={Biao Zhang and Philip Williams and Ivan Titov and Rico Sennrich},
year={2020},
eprint={2004.11867},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
"""
_DESCRIPTION = """\
OPUS-100 is English-centric, meaning that all training pairs include English on either the source or target side.
The corpus covers 100 languages (including English).OPUS-100 contains approximately 55M sentence pairs.
Of the 99 language pairs, 44 have 1M sentence pairs of training data, 73 have at least 100k, and 95 have at least 10k.
"""
_URL = {
"supervised": "https://object.pouta.csc.fi/OPUS-100/v1.0/opus-100-corpus-{}-v1.0.tar.gz",
"zero-shot": "https://object.pouta.csc.fi/OPUS-100/v1.0/opus-100-corpus-zeroshot-v1.0.tar.gz",
}
_SupervisedLanguagePairs = [
"af-en",
"am-en",
"an-en",
"ar-en",
"as-en",
"az-en",
"be-en",
"bg-en",
"bn-en",
"br-en",
"bs-en",
"ca-en",
"cs-en",
"cy-en",
"da-en",
"de-en",
"dz-en",
"el-en",
"en-eo",
"en-es",
"en-et",
"en-eu",
"en-fa",
"en-fi",
"en-fr",
"en-fy",
"en-ga",
"en-gd",
"en-gl",
"en-gu",
"en-ha",
"en-he",
"en-hi",
"en-hr",
"en-hu",
"en-hy",
"en-id",
"en-ig",
"en-is",
"en-it",
"en-ja",
"en-ka",
"en-kk",
"en-km",
"en-ko",
"en-kn",
"en-ku",
"en-ky",
"en-li",
"en-lt",
"en-lv",
"en-mg",
"en-mk",
"en-ml",
"en-mn",
"en-mr",
"en-ms",
"en-mt",
"en-my",
"en-nb",
"en-ne",
"en-nl",
"en-nn",
"en-no",
"en-oc",
"en-or",
"en-pa",
"en-pl",
"en-ps",
"en-pt",
"en-ro",
"en-ru",
"en-rw",
"en-se",
"en-sh",
"en-si",
"en-sk",
"en-sl",
"en-sq",
"en-sr",
"en-sv",
"en-ta",
"en-te",
"en-tg",
"en-th",
"en-tk",
"en-tr",
"en-tt",
"en-ug",
"en-uk",
"en-ur",
"en-uz",
"en-vi",
"en-wa",
"en-xh",
"en-yi",
"en-yo",
"en-zh",
"en-zu",
]
_0shotLanguagePairs = [
"ar-de",
"ar-fr",
"ar-nl",
"ar-ru",
"ar-zh",
"de-fr",
"de-nl",
"de-ru",
"de-zh",
"fr-nl",
"fr-ru",
"fr-zh",
"nl-ru",
"nl-zh",
"ru-zh",
]
class Opus100Config(datasets.BuilderConfig):
"""BuilderConfig for Opus100"""
def __init__(self, language_pair, **kwargs):
super().__init__(**kwargs)
"""
Args:
language_pair: language pair, you want to load
**kwargs: keyword arguments forwarded to super.
"""
self.language_pair = language_pair
class Opus100(datasets.GeneratorBasedBuilder):
"""OPUS-100 is English-centric, meaning that all training pairs include English on either the source or target side."""
VERSION = datasets.Version("1.0.0")
BUILDER_CONFIG_CLASS = Opus100Config
BUILDER_CONFIGS = [
Opus100Config(name=pair, description=_DESCRIPTION, language_pair=pair)
for pair in _SupervisedLanguagePairs + _0shotLanguagePairs
]
def _info(self):
src_tag, tgt_tag = self.config.language_pair.split("-")
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features({"translation": datasets.features.Translation(languages=(src_tag, tgt_tag))}),
supervised_keys=(src_tag, tgt_tag),
homepage="http://opus.nlpl.eu/opus-100.php",
citation=_CITATION,
)
def _split_generators(self, dl_manager):
lang_pair = self.config.language_pair
src_tag, tgt_tag = lang_pair.split("-")
domain = "supervised"
if lang_pair in _0shotLanguagePairs:
domain = "zero-shot"
if domain == "supervised":
dl_dir = dl_manager.download_and_extract(_URL["supervised"].format(lang_pair))
elif domain == "zero-shot":
dl_dir = dl_manager.download_and_extract(_URL["zero-shot"])
data_dir = os.path.join(dl_dir, os.path.join("opus-100-corpus", "v1.0", domain, lang_pair))
output = []
test = datasets.SplitGenerator(
name=datasets.Split.TEST,
# These kwargs will be passed to _generate_examples
gen_kwargs={
"filepath": os.path.join(data_dir, f"opus.{lang_pair}-test.{src_tag}"),
"labelpath": os.path.join(data_dir, f"opus.{lang_pair}-test.{tgt_tag}"),
},
)
if f"opus.{lang_pair}-test.{src_tag}" in os.listdir(data_dir):
output.append(test)
if domain == "supervised":
train = datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"filepath": os.path.join(data_dir, f"opus.{lang_pair}-train.{src_tag}"),
"labelpath": os.path.join(data_dir, f"opus.{lang_pair}-train.{tgt_tag}"),
},
)
if f"opus.{lang_pair}-train.{src_tag}" in os.listdir(data_dir):
output.append(train)
valid = datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
# These kwargs will be passed to _generate_examples
gen_kwargs={
"filepath": os.path.join(data_dir, f"opus.{lang_pair}-dev.{src_tag}"),
"labelpath": os.path.join(data_dir, f"opus.{lang_pair}-dev.{tgt_tag}"),
},
)
if f"opus.{lang_pair}-dev.{src_tag}" in os.listdir(data_dir):
output.append(valid)
return output
def _generate_examples(self, filepath, labelpath):
""" Yields examples. """
src_tag, tgt_tag = self.config.language_pair.split("-")
with open(filepath, encoding="utf-8") as f1, open(labelpath, encoding="utf-8") as f2:
src = f1.read().split("\n")[:-1]
tgt = f2.read().split("\n")[:-1]
for idx, (s, t) in enumerate(zip(src, tgt)):
yield idx, {"translation": {src_tag: s, tgt_tag: t}}
|