|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""TEP: Tehran English-Persian parallel corpus.""" |
|
|
|
|
|
import os |
|
|
|
import datasets |
|
|
|
|
|
_CITATION = """\ |
|
@InProceedings{“TEP: Tehran English-Persian Parallel Corpus”, |
|
title = {TEP: Tehran English-Persian Parallel Corpus”, in proceedings of 12th International Conference \ |
|
on Intelligent Text Processing and Computational Linguistics (CICLing-2011)}, |
|
authors={M. T. Pilevar, H. Faili, and A. H. Pilevar, }, |
|
year={2011} |
|
} |
|
""" |
|
|
|
|
|
_DESCRIPTION = """\ |
|
TEP: Tehran English-Persian parallel corpus. The first free Eng-Per corpus, provided by the Natural Language and Text Processing Laboratory, University of Tehran. |
|
""" |
|
|
|
|
|
_HOMEPAGE = "http://opus.nlpl.eu/TEP.php" |
|
|
|
|
|
_LICENSE = "" |
|
|
|
|
|
_URLs = {"train": "https://object.pouta.csc.fi/OPUS-TEP/v1/moses/en-fa.txt.zip"} |
|
|
|
|
|
class TepEnFaPara(datasets.GeneratorBasedBuilder): |
|
"""TEP: Tehran English-Persian parallel corpus.""" |
|
|
|
VERSION = datasets.Version("1.1.0") |
|
|
|
BUILDER_CONFIGS = [ |
|
datasets.BuilderConfig(name="en-fa", version=VERSION), |
|
] |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=datasets.Features( |
|
{"translation": datasets.features.Translation(languages=tuple(self.config.name.split("-")))} |
|
), |
|
supervised_keys=None, |
|
homepage="http://opus.nlpl.eu/TEP.php", |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
"""Returns SplitGenerators.""" |
|
data_dir = dl_manager.download_and_extract(_URLs) |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
|
|
gen_kwargs={ |
|
"source_file": os.path.join(data_dir["train"], "TEP.en-fa.en"), |
|
"target_file": os.path.join(data_dir["train"], "TEP.en-fa.fa"), |
|
"split": "train", |
|
}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, source_file, target_file, split): |
|
"""This function returns the examples in the raw (text) form.""" |
|
with open(source_file, encoding="utf-8") as f: |
|
source_sentences = f.read().split("\n") |
|
with open(target_file, encoding="utf-8") as f: |
|
target_sentences = f.read().split("\n") |
|
|
|
assert len(target_sentences) == len(source_sentences), "Sizes do not match: %d vs %d for %s vs %s." % ( |
|
len(source_sentences), |
|
len(target_sentences), |
|
source_file, |
|
target_file, |
|
) |
|
|
|
source, target = tuple(self.config.name.split("-")) |
|
for idx, (l1, l2) in enumerate(zip(source_sentences, target_sentences)): |
|
result = {"translation": {source: l1, target: l2}} |
|
yield idx, result |
|
|