File size: 6,971 Bytes
f6afc70 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 |
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# TODO: Address all TODOs and remove all explanatory comments
"""桃園多國語系翻譯競賽: Translate dataset."""
import csv
import json
import os
import datasets
logger = datasets.logging.get_logger(__name__)
# TODO: Add BibTeX citation
# Find for instance the citation on arxiv or on the dataset repo/website
_CITATION = """\
@InProceedings{huggingface:dataset,
title = {A great new dataset},
author={huggingface, Inc.
},
year={2020}
}
"""
_DESCRIPTION = """\
Translation dataset based on the data from statmt.org.
Versions exist for different years using a combination of data
sources. The base `wmt` allows you to create a custom dataset by choosing
your own data/language pair. This can be done as follows:
```python
from datasets import inspect_dataset, load_dataset_builder
inspect_dataset("wmt16", "path/to/scripts")
builder = load_dataset_builder(
"path/to/scripts/wmt_utils.py",
language_pair=("fr", "de"),
subsets={
datasets.Split.TRAIN: ["commoncrawl_frde"],
datasets.Split.VALIDATION: ["euelections_dev2019"],
},
)
# Standard version
builder.download_and_prepare()
ds = builder.as_dataset()
# Streamable version
ds = builder.as_streaming_dataset()
```
"""
_LANGUAGE_PAIRS = [(lang, "zh_tw") for lang in ["en", "ja", "ko", "id", "vi", "th"]]
# TODO: Add a link to an official homepage for the dataset here
_HOMEPAGE = "https://huggingface.co/Heng666"
_LICENSE = "cc-by-2.0"
# The HuggingFace Datasets library doesn't host the datasets but only points to the original files.
# This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
_URL = "http://www.statmt.org/wmt16/translation-task.html"
class Ted2020TWMTConfig(datasets.BuilderConfig):
"""BuilderConfig for ted2020TW-mt"""
def __init__(self, url=None, citation=None, description=None, language_pair=(None, None), **kwargs):
"""
Args:
url: The reference URL for the dataset.
citation: The paper citation for the dataset.
description: The description of the dataset.
language_pair: pair of languages that will be used for translation. Should
contain 2 letter coded strings. For example: ("en", "de").
configuration for the `datasets.features.text.TextEncoder` used for the
`datasets.features.text.Translation` features.
**kwargs: keyword arguments forwarded to super.
"""
name = "%s-%s" % (language_pair[0], language_pair[1])
if "name" in kwargs: # Add name suffix for custom configs
name += "." + kwargs.pop("name")
super().__init__(name=name, description=description, **kwargs)
self.url = url or "http://www.statmt.org"
self.citation = citation
self.language_pair = language_pair
class Ted2020TWMTDataset(datasets.GeneratorBasedBuilder):
"""TODO: Short description of my dataset."""
VERSION = datasets.Version("1.0.0")
BUILDER_CONFIG_CLASS = Ted2020TWMTConfig
BUILDER_CONFIGS = [
Ted2020TWMTConfig( # pylint:disable=g-complex-comprehension
description="桃園捷運 %s-%s translation task dataset." % (l1, l2),
url=_URL,
citation=_CITATION,
language_pair=(l1, l2),
version=datasets.Version("1.0.0"),
)
for l1, l2 in _LANGUAGE_PAIRS
]
def _info(self):
src, target = self.config.language_pair
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(
{
"translation": datasets.features.Translation(languages=self.config.language_pair)
}
),
homepage=_HOMEPAGE,
citation=_CITATION,
license=_LICENSE
)
def _split_generators(self, dl_manager):
lang_pair = self.config.language_pair
# 將語言對轉換成適合檔案命名的格式,例如 'vi-zh_tw'
lang_pair_str = f"{lang_pair[1]}-{lang_pair[0]}"
files = {}
# 根據新的檔案命名規則更新檔案路徑
train_path = os.path.join("train", f"{lang_pair_str}_translations_train.csv")
files["train"]= train_path
test_path = os.path.join("test", f"{lang_pair_str}_translations_test.csv")
files["test"] = test_path
try:
data_dir = dl_manager.download_and_extract(files)
except:
files.pop("test")
data_dir = dl_manager.download_and_extract(files)
output = []
if "train" in files:
train = datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"filepath": data_dir["train"]
}
)
output.append(train)
if "test" in files:
test = datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"filepath": data_dir["test"]
}
)
output.append(test)
return output
# # method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
# def _generate_examples(self, filepath):
# """Yields examples."""
# with open(filepath, encoding="utf-8") as f:
# reader = csv.reader(f, delimiter=",", quotechar='"')
# for id_, row in enumerate(reader):
# if id_ == 0:
# continue
# yield id_, {
# "instruction": row[0],
# "input": row[1],
# "output": row[2]
# }
def _generate_examples(self, filepath):
"""Yields examples from the CSV file where each row contains translations in JSON format."""
with open(filepath, encoding="utf-8") as f:
reader = csv.reader(f, delimiter=",", quotechar='"')
for id_, row in enumerate(reader):
if id_ == 0: # 假設第一行是標題行,所以跳過它
continue
# 假設你的CSV文件結構是每行一個JSON字符串
translation_data = json.loads(row[0])
print(translation_data)
yield id_, {
'translation': translation_data,
} |