File size: 5,604 Bytes
69ba3fc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 |
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# TODO: Address all TODOs and remove all explanatory comments
"""ted2020_tw_mt"""
import csv
import json
import os
import datasets
# TODO: Add BibTeX citation
# Find for instance the citation on arxiv or on the dataset repo/website
_CITATION = """\
@InProceedings{huggingface:dataset,
title = {中文 Aya evaluation_suite},
author={Heng-Shiou Sheu
},
year={2024}
}
"""
# You can copy an official description
_DESCRIPTION = """\
是一個精心策劃的資料集,源自 CohereForAI 的綜合 Aya 集合,特別關注繁體中文資料。
此資料集聚合了 CohereForAI/aya_collection、CohereForAI/aya_dataset 和 CohereForAI/aya_evaluation_suite 中的內容,
過濾掉除中文內容之外的所有內容,包括繁體中文與簡體中文。
"""
# TODO 請使用 MAC 讀取資料夾內容來做更新
_Subset_names = [
'aya_human_annotated',
'dolly_machine_translated'
]
# TODO: Add a link to an official homepage for the dataset here
_HOMEPAGE = "https://huggingface.co/Heng666"
_LICENSE = "apache-2.0"
# The HuggingFace Datasets library doesn't host the datasets but only points to the original files.
# This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
_URLS = {
"aya_collection": "https://huggingface.co/datasets/CohereForAI/aya_collection",
"aya_dataset": "https://huggingface.co/datasets/CohereForAI/aya_dataset",
"evaluation_suite": "https://huggingface.co/datasets/CohereForAI/aya_evaluation_suite"
}
class ChineseAyaEvalSuiteConfig(datasets.BuilderConfig):
"""BuilderConfig for Chinese Aya"""
def __init__(self, subset, **kwargs):
super().__init__(**kwargs)
"""
Args:
subset: subset, you want to load
**kwargs: keyword arguments forwarded to super.
"""
self.subset = subset
class ChineseAyaEvalSuiteDataset(datasets.GeneratorBasedBuilder):
"""TODO: Short description of my dataset."""
VERSION = datasets.Version("1.0.0")
BUILDER_CONFIG_CLASS = ChineseAyaEvalSuiteConfig
BUILDER_CONFIGS = [
ChineseAyaEvalSuiteConfig(
name=subset,
description=_DESCRIPTION,
subset=subset
)
for subset in _Subset_names
]
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features({
"id": datasets.Value("int64"),
"inputs": datasets.Value("string"),
"targets": datasets.Value("string"),
"language": datasets.Value("string"),
"script": datasets.Value("string"),
}),
homepage=_HOMEPAGE,
citation=_CITATION,
license=_LICENSE
)
def _split_generators(self, dl_manager):
subset = self.config.subset
files = {}
train_path = os.path.join("train/", f"CohereForAI-{subset}-train.csv")
files["train"] = train_path
test_path = os.path.join("test", f"CohereForAI-{subset}-test.csv")
files["test"] = test_path
validation_path = os.path.join("validation", f"CohereForAI-{subset}-validation.csv")
files["validation"] = validation_path
try:
data_dir = dl_manager.download_and_extract(files)
except:
files.pop("train")
files.pop("validation")
data_dir = dl_manager.download_and_extract(files)
output = []
if "train" in files:
train = datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"filepath": data_dir["train"]
}
)
output.append(train)
if "test" in files:
test = datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"filepath": data_dir["test"]
}
)
output.append(test)
if "validation" in files:
validation = datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={
"filepath": data_dir["validation"]
}
)
output.append(validation)
return output
# method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
def _generate_examples(self, filepath):
"""Yields examples."""
with open(filepath, encoding="utf-8") as f:
reader = csv.reader(f, delimiter=",", quotechar='"')
for id_, row in enumerate(reader):
if id_ == 0:
continue
yield id_, {
"id": row[0],
"inputs": row[1],
"targets": row[2],
"language": row[3],
"script": row[4],
} |